语音增强
加权
帧(网络)
计算机科学
滤波器(信号处理)
语音识别
相关性
维纳滤波器
信号(编程语言)
频域
噪音(视频)
算法
光谱密度
二进制数
数学
人工智能
声学
电信
物理
算术
几何学
图像(数学)
计算机视觉
程序设计语言
作者
Alexander Schasse,Rainer Martin
标识
DOI:10.1109/icassp.2013.6639117
摘要
In this paper, we propose solutions for the online adaptation of optimal FIR filters for speech enhancement in DFT subbands. An important ingredient to such filters is the estimation of the inter-frame correlation of the clean speech signal. While this correlation was assumed to be perfectly known in former studies, we discuss two online estimation approaches based on a constant noise inter-frame correlation and on the use of a binary mask. We show that a filtering of subband signals based on these estimated quantities outperforms a conventional, instantaneous spectral weighting, such as the frequency-domain Wiener filter at least for high SNR conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI