Tikhonov正则化
数学
正规化(语言学)
收敛速度
应用数学
热传导
反问题
非线性系统
支持向量机的正则化研究进展
趋同(经济学)
巴克斯-吉尔伯特法
数学分析
计算机科学
物理
人工智能
频道(广播)
热力学
量子力学
经济增长
经济
计算机网络
出处
期刊:Inverse Problems
[IOP Publishing]
日期:2000-12-01
卷期号:16 (6): 1907-1923
被引量:110
标识
DOI:10.1088/0266-5611/16/6/319
摘要
In this paper we investigate the stability and convergence rates of the widely used output least-squares method with Tikhonov regularization for the identification of the conductivity distribution in a heat conduction system. Due to the rather restrictive source conditions and regularity assumptions on the nonlinear parameter-to-solution operator concerned, the existing Tikhonov regularization theory for nonlinear inverse problems is difficult to apply for the convergence rate analysis here. By introducing some new techniques, we are able to relax these regularity requirements and derive a much simpler and easily interpretable source condition but still achieve the same convergence rates as the standard Tikhonov regularization theory does.
科研通智能强力驱动
Strongly Powered by AbleSci AI