The effect of pH and contact time on uranium extractability from quartz surfaces was investigated using either acidic or carbonate (CARB) extraction solutions, time-delayed spikes of different U isotopes ((238)U and (233)U), and liquid helium temperature time-resolved laser-induced fluorescence spectroscopy (TRLFS). Quartz powders were reacted with (238)U(VI) bearing solutions equilibrated with atmospheric CO(2) at pH 6, 7, and 8. After 42 days, the suspensions were spiked with (233)U(VI) and reacted for an additional 7 days. Sorbed U was then extracted with either dilute nitric acid or CARB. For the CARB, but not the acid, extraction there was a systematic decrease in extraction efficiency for both isotopes from pH 6 to 8, which was mimicked by less desorption of (238)U, after the (233)U spike, from pH 6 to 8. The efficiency of (233)U extraction was consistently greater than that of (238)U, indicating a strong temporal component to the strength of U association with the surface that was accentuated with increasing pH. TRLFS revealed a strong correlation between CARB extraction efficiency and sorbed U speciation as a function of pH and time. Collectively, the observations show that aging and pH are critical factors in determining the form and strength of uranium-silica interactions.