计算机科学
领域(数学分析)
人工智能
视觉对象识别的认知神经科学
域适应
对象(语法)
转化(遗传学)
光学(聚焦)
背景(考古学)
三维单目标识别
特征(语言学)
适应(眼睛)
计算机视觉
认知科学
机器学习
人机交互
可视化
模式识别(心理学)
计算机图形学(图像)
心理学
哲学
古生物学
数学分析
物理
化学
光学
基因
分类器(UML)
生物
生物化学
语言学
数学
作者
Kate Saenko,Brian Kulis,Mario Fritz,Trevor Darrell
标识
DOI:10.1007/978-3-642-15561-1_16
摘要
Domain adaptation is an important emerging topic in computer vision. In this paper, we present one of the first studies of domain shift in the context of object recognition. We introduce a method that adapts object models acquired in a particular visual domain to new imaging conditions by learning a transformation that minimizes the effect of domain-induced changes in the feature distribution. The transformation is learned in a supervised manner and can be applied to categories for which there are no labeled examples in the new domain. While we focus our evaluation on object recognition tasks, the transform-based adaptation technique we develop is general and could be applied to non-image data. Another contribution is a new multi-domain object database, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI