SGCL

计算机科学 人气 判别式 理论计算机科学 人工智能 图形 特征学习 自然语言处理 心理学 社会心理学
作者
Lin Shu,Erxin Du,Yaomin Chang,Chuan Chen,Zibin Zheng,Xingxing Xing,Shaofeng Shen
标识
DOI:10.1145/3459637.3482478
摘要

Graph contrastive representation learning aims to learn discriminative node representations by contrasting positive and negative samples. It helps models learn more generalized representations to achieve better performances on downstream tasks, which has aroused increasing research interest in recent years. Simultaneously, signed graphs consisting of both positive and negative links have become ubiquitous with the growing popularity of social media. However, existing works on graph contrastive representation learning are only proposed for unsigned graphs (containing only positive links) and it remains unexplored how they could be applied to signed graphs due to the distinct semantics and complex relations between positive and negative links. Therefore we propose a novel Signed Graph Contrastive Learning model (SGCL) to bridge this gap, which to the best of our knowledge is the first research to employ graph contrastive representation learning on signed graphs. Concretely, we design two types of graph augmentations specific to signed graphs based on a significant signed social theory, i.e., balance theory. Besides, inter-view and intra-view contrastive learning are proposed to learn discriminative node representations from perspectives of graph augmentations and signed structures respectively. Experimental results demonstrate the superiority of the proposed model over state-of-the-art methods on both real-world social datasets and online game datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泼婆婆完成签到,获得积分10
刚刚
1秒前
tt发布了新的文献求助10
1秒前
AN发布了新的文献求助30
1秒前
1秒前
坚果发布了新的文献求助10
3秒前
3秒前
贝利亚发布了新的文献求助10
3秒前
罗静完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
zxn发布了新的文献求助50
4秒前
小太阳完成签到,获得积分10
5秒前
LVVVB完成签到,获得积分10
5秒前
曼容发布了新的文献求助10
5秒前
Rhea发布了新的文献求助10
5秒前
Lumos完成签到,获得积分10
7秒前
正直行恶发布了新的文献求助10
7秒前
郑雅柔完成签到 ,获得积分0
8秒前
YukiXu发布了新的文献求助10
9秒前
dadsafyf发布了新的文献求助10
9秒前
科研小白发布了新的文献求助10
9秒前
9秒前
科研通AI6应助老西红柿采纳,获得10
9秒前
可爱的函函应助jialin采纳,获得10
9秒前
9秒前
10秒前
积雨云关注了科研通微信公众号
10秒前
Lucas应助lily采纳,获得10
10秒前
11秒前
爆米花应助gaga采纳,获得10
11秒前
CipherSage应助正直行恶采纳,获得10
12秒前
DreamerOj完成签到,获得积分10
13秒前
NexusExplorer应助曼容采纳,获得10
13秒前
吕俊杰发布了新的文献求助10
13秒前
WATeam发布了新的文献求助10
14秒前
14秒前
14秒前
张远最帅发布了新的文献求助10
15秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588375
求助须知:如何正确求助?哪些是违规求助? 4671508
关于积分的说明 14787418
捐赠科研通 4625221
什么是DOI,文献DOI怎么找? 2531826
邀请新用户注册赠送积分活动 1500389
关于科研通互助平台的介绍 1468314