SGCL

计算机科学 人气 判别式 理论计算机科学 人工智能 图形 特征学习 自然语言处理 心理学 社会心理学
作者
Lin Shu,Erxin Du,Yaomin Chang,Chuan Chen,Zibin Zheng,Xingxing Xing,Shaofeng Shen
标识
DOI:10.1145/3459637.3482478
摘要

Graph contrastive representation learning aims to learn discriminative node representations by contrasting positive and negative samples. It helps models learn more generalized representations to achieve better performances on downstream tasks, which has aroused increasing research interest in recent years. Simultaneously, signed graphs consisting of both positive and negative links have become ubiquitous with the growing popularity of social media. However, existing works on graph contrastive representation learning are only proposed for unsigned graphs (containing only positive links) and it remains unexplored how they could be applied to signed graphs due to the distinct semantics and complex relations between positive and negative links. Therefore we propose a novel Signed Graph Contrastive Learning model (SGCL) to bridge this gap, which to the best of our knowledge is the first research to employ graph contrastive representation learning on signed graphs. Concretely, we design two types of graph augmentations specific to signed graphs based on a significant signed social theory, i.e., balance theory. Besides, inter-view and intra-view contrastive learning are proposed to learn discriminative node representations from perspectives of graph augmentations and signed structures respectively. Experimental results demonstrate the superiority of the proposed model over state-of-the-art methods on both real-world social datasets and online game datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助柚子采纳,获得10
刚刚
2秒前
研0被骂儿完成签到,获得积分20
2秒前
传奇3应助风继续吹采纳,获得10
2秒前
完美世界应助bobobibo采纳,获得10
2秒前
Yihua完成签到,获得积分10
2秒前
3秒前
4秒前
生动丹云发布了新的文献求助10
5秒前
Aderin发布了新的文献求助10
5秒前
6秒前
6秒前
研0被骂儿发布了新的文献求助30
8秒前
9秒前
清新的剑心完成签到 ,获得积分10
9秒前
9秒前
CipherSage应助薛雨佳采纳,获得10
10秒前
haikuotian举报00求助涉嫌违规
11秒前
11秒前
杏梨发布了新的文献求助10
11秒前
文艺新儿发布了新的文献求助10
13秒前
Jasper应助大翟采纳,获得10
13秒前
Tu发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
17秒前
兴奋寄容完成签到,获得积分10
18秒前
19秒前
赘婿应助wangayting采纳,获得10
19秒前
19秒前
科研通AI2S应助hhh采纳,获得10
21秒前
细腻的灵寒完成签到,获得积分20
22秒前
22秒前
憨憨发布了新的文献求助10
22秒前
研友_VZG7GZ应助lanxin采纳,获得10
24秒前
小郭完成签到,获得积分10
25秒前
27秒前
生动丹云完成签到,获得积分10
27秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084626
求助须知:如何正确求助?哪些是违规求助? 2737675
关于积分的说明 7546358
捐赠科研通 2387296
什么是DOI,文献DOI怎么找? 1265911
科研通“疑难数据库(出版商)”最低求助积分说明 613207
版权声明 598409