SGCL

计算机科学 人气 判别式 理论计算机科学 人工智能 图形 特征学习 自然语言处理 心理学 社会心理学
作者
Lin Shu,Erxin Du,Yaomin Chang,Chuan Chen,Zibin Zheng,Xingxing Xing,Shaofeng Shen
标识
DOI:10.1145/3459637.3482478
摘要

Graph contrastive representation learning aims to learn discriminative node representations by contrasting positive and negative samples. It helps models learn more generalized representations to achieve better performances on downstream tasks, which has aroused increasing research interest in recent years. Simultaneously, signed graphs consisting of both positive and negative links have become ubiquitous with the growing popularity of social media. However, existing works on graph contrastive representation learning are only proposed for unsigned graphs (containing only positive links) and it remains unexplored how they could be applied to signed graphs due to the distinct semantics and complex relations between positive and negative links. Therefore we propose a novel Signed Graph Contrastive Learning model (SGCL) to bridge this gap, which to the best of our knowledge is the first research to employ graph contrastive representation learning on signed graphs. Concretely, we design two types of graph augmentations specific to signed graphs based on a significant signed social theory, i.e., balance theory. Besides, inter-view and intra-view contrastive learning are proposed to learn discriminative node representations from perspectives of graph augmentations and signed structures respectively. Experimental results demonstrate the superiority of the proposed model over state-of-the-art methods on both real-world social datasets and online game datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cm发布了新的文献求助10
1秒前
Forest驳回了Owen应助
2秒前
风清扬发布了新的文献求助10
2秒前
王晋辉发布了新的文献求助10
2秒前
FashionBoy应助DG采纳,获得10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
包容砖家完成签到,获得积分10
5秒前
乐乐应助憨憨的小于采纳,获得10
6秒前
7秒前
彩色的兰发布了新的文献求助10
8秒前
pluto应助山河入梦来采纳,获得10
8秒前
111完成签到,获得积分10
8秒前
含糊的可仁完成签到,获得积分10
9秒前
fangfeng发布了新的文献求助10
9秒前
小小完成签到,获得积分10
9秒前
张秋雨发布了新的文献求助30
9秒前
kaka发布了新的文献求助30
10秒前
ChiariRay发布了新的文献求助10
11秒前
michen发布了新的文献求助10
12秒前
12秒前
希望天下0贩的0应助123采纳,获得10
13秒前
小小发布了新的文献求助10
13秒前
14秒前
lsy完成签到,获得积分10
14秒前
14秒前
15秒前
thnokiin完成签到,获得积分10
16秒前
16秒前
16秒前
DG发布了新的文献求助10
16秒前
王晋辉完成签到,获得积分20
16秒前
123456完成签到,获得积分20
18秒前
CC完成签到,获得积分10
19秒前
20秒前
123456发布了新的文献求助10
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
CC发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675597
求助须知:如何正确求助?哪些是违规求助? 4947581
关于积分的说明 15153918
捐赠科研通 4834916
什么是DOI,文献DOI怎么找? 2589694
邀请新用户注册赠送积分活动 1543483
关于科研通互助平台的介绍 1501233