SGCL

计算机科学 人气 判别式 理论计算机科学 人工智能 图形 特征学习 自然语言处理 心理学 社会心理学
作者
Lin Shu,Erxin Du,Yaomin Chang,Chuan Chen,Zibin Zheng,Xingxing Xing,Shaofeng Shen
标识
DOI:10.1145/3459637.3482478
摘要

Graph contrastive representation learning aims to learn discriminative node representations by contrasting positive and negative samples. It helps models learn more generalized representations to achieve better performances on downstream tasks, which has aroused increasing research interest in recent years. Simultaneously, signed graphs consisting of both positive and negative links have become ubiquitous with the growing popularity of social media. However, existing works on graph contrastive representation learning are only proposed for unsigned graphs (containing only positive links) and it remains unexplored how they could be applied to signed graphs due to the distinct semantics and complex relations between positive and negative links. Therefore we propose a novel Signed Graph Contrastive Learning model (SGCL) to bridge this gap, which to the best of our knowledge is the first research to employ graph contrastive representation learning on signed graphs. Concretely, we design two types of graph augmentations specific to signed graphs based on a significant signed social theory, i.e., balance theory. Besides, inter-view and intra-view contrastive learning are proposed to learn discriminative node representations from perspectives of graph augmentations and signed structures respectively. Experimental results demonstrate the superiority of the proposed model over state-of-the-art methods on both real-world social datasets and online game datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ss关闭了ss文献求助
刚刚
窦慕卉发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
Fall完成签到,获得积分10
2秒前
上官若男应助Twen采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
受伤的中蓝完成签到 ,获得积分10
3秒前
陈陈陈发布了新的文献求助10
3秒前
songnvshi完成签到 ,获得积分10
3秒前
hyw发布了新的文献求助10
4秒前
4秒前
mdmdd发布了新的文献求助10
4秒前
Orange应助木子之水采纳,获得10
5秒前
6秒前
无情飞松发布了新的文献求助10
7秒前
7秒前
9秒前
9秒前
机灵曼荷完成签到,获得积分10
10秒前
ironyss发布了新的文献求助10
10秒前
yang发布了新的文献求助10
10秒前
吕雄涛完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
还没想好发布了新的文献求助10
11秒前
11秒前
淡定草丛发布了新的文献求助10
12秒前
13秒前
在水一方应助欢喜的无招采纳,获得10
13秒前
猪猪hero发布了新的文献求助10
13秒前
upandcoming发布了新的文献求助10
13秒前
14秒前
蜉蝣完成签到 ,获得积分10
14秒前
吕雄涛发布了新的文献求助10
15秒前
15秒前
卡卡卡发布了新的文献求助10
16秒前
xiaotangyuan发布了新的文献求助10
16秒前
田様应助Alin采纳,获得10
17秒前
张嘉芬完成签到,获得积分10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704813
求助须知:如何正确求助?哪些是违规求助? 5158878
关于积分的说明 15242939
捐赠科研通 4858662
什么是DOI,文献DOI怎么找? 2607392
邀请新用户注册赠送积分活动 1558393
关于科研通互助平台的介绍 1516137