愈创木酚
加氢脱氧
加氢脱硫
催化作用
化学
环己酮
沸石
介孔材料
苯
香兰素
环己醇
无机化学
有机化学
选择性
作者
Lingyu Tai,Roya Hamidi,Benedetta de Caprariis,Martina Damizia,Laura Paglia,Marco Scarsella,Ramin Karimzadeh,Paolo De Filippis
标识
DOI:10.1016/j.renene.2021.10.048
摘要
Catalytic hydrotreating of guaiacol as a model compound was investigated using bifunctional catalysts constituted of Ni supported on chemically modified zeolites with increased mesoporosity. In the reaction conditions, the hydrogen required for the process was generated in situ by the Zn–H2O redox system, which represents a promising green alternative to the use of gaseous hydrogen. The guaiacol hydrotreating conversion using as support zeolites with increased mesoporosity, is largely higher than that obtained with the original ones. The introduction of mesopores through desilication treatment with NaOH and TBAOH significantly increased the mass transfer of guaiacol and improved the accessibility of the active sites, accordingly enhancing the catalytic performance. The alkaline treatment notably increased the mesopore volume of Ni/HZSM-5 and Ni/HBeta by 5.6 and 3.8 times, respectively. Ni supported on desilicated HBeta zeolite displayed high hydrodeoxygenation and hydrodearomatization efficiencies with values of 69.37% and 62.82%, respectively. The reusability of this catalyst was investigated, showing a decrease in the performance after three consecutive runs due to the oxidation of Ni active site, coking and zinc oxide contamination. The main of guaiacol conversion products are cyclohexane, cyclohexanone, cyclohexanol, benzene and phenol. A reaction pathway of guaiacol hydrotreating using Ni-zeolites catalysts is proposed.
科研通智能强力驱动
Strongly Powered by AbleSci AI