亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Hybrid Deep Learning-Based Unsupervised Anomaly Detection in High Dimensional Data

自编码 计算机科学 维数之咒 异常检测 人工智能 人工神经网络 深度学习 机器学习 功能(生物学) 模式识别(心理学) 随机梯度下降算法 数据挖掘 进化生物学 生物
作者
Amgad Muneer,Shakirah Mohd Taib,Suliman Mohamed Fati,Abdullateef Oluwagbemiga Balogun,Izzatdin Abdul Aziz
出处
期刊:Computers, materials & continua 卷期号:70 (3): 5363-5381 被引量:12
标识
DOI:10.32604/cmc.2022.021113
摘要

Anomaly detection in high dimensional data is a critical research issue with serious implication in the real-world problems. Many issues in this field still unsolved, so several modern anomaly detection methods struggle to maintain adequate accuracy due to the highly descriptive nature of big data. Such a phenomenon is referred to as the “curse of dimensionality” that affects traditional techniques in terms of both accuracy and performance. Thus, this research proposed a hybrid model based on Deep Autoencoder Neural Network (DANN) with five layers to reduce the difference between the input and output. The proposed model was applied to a real-world gas turbine (GT) dataset that contains 87620 columns and 56 rows. During the experiment, two issues have been investigated and solved to enhance the results. The first is the dataset class imbalance, which solved using SMOTE technique. The second issue is the poor performance, which can be solved using one of the optimization algorithms. Several optimization algorithms have been investigated and tested, including stochastic gradient descent (SGD), RMSprop, Adam and Adamax. However, Adamax optimization algorithm showed the best results when employed to train the DANN model. The experimental results show that our proposed model can detect the anomalies by efficiently reducing the high dimensionality of dataset with accuracy of 99.40%, F1-score of 0.9649, Area Under the Curve (AUC) rate of 0.9649, and a minimal loss function during the hybrid model training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助Yilam采纳,获得10
刚刚
SciKid524完成签到 ,获得积分10
1秒前
2秒前
3秒前
浮游应助zyq采纳,获得30
4秒前
我是老大应助帅气的璎采纳,获得50
4秒前
知林的喵发布了新的文献求助10
4秒前
七月完成签到 ,获得积分10
5秒前
841784021发布了新的文献求助10
7秒前
10秒前
动听的向秋完成签到 ,获得积分10
14秒前
勤奋的猫咪完成签到 ,获得积分10
16秒前
风华笔墨发布了新的文献求助10
19秒前
清秋1001完成签到 ,获得积分10
21秒前
今天你开组会了吗完成签到 ,获得积分10
22秒前
知林的喵发布了新的文献求助30
23秒前
GavinYi完成签到,获得积分10
24秒前
mashibeo完成签到,获得积分10
26秒前
27秒前
DrJiang完成签到,获得积分10
27秒前
29秒前
未寄出的信笺积满灰尘完成签到 ,获得积分10
34秒前
Rw发布了新的文献求助10
36秒前
Thanks完成签到 ,获得积分10
38秒前
嗯嗯完成签到 ,获得积分10
39秒前
桐桐应助yyy采纳,获得10
40秒前
zoye完成签到 ,获得积分10
41秒前
Stephhen完成签到,获得积分10
42秒前
Rw完成签到,获得积分10
42秒前
喜悦宫苴完成签到,获得积分10
44秒前
山川日月完成签到,获得积分10
44秒前
47秒前
科研通AI2S应助淑欢采纳,获得10
48秒前
852应助科研通管家采纳,获得10
49秒前
Kei应助科研通管家采纳,获得10
49秒前
爆米花应助科研通管家采纳,获得10
49秒前
传奇3应助科研通管家采纳,获得10
49秒前
合一海盗完成签到,获得积分10
51秒前
yyy发布了新的文献求助10
53秒前
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401218
求助须知:如何正确求助?哪些是违规求助? 4520174
关于积分的说明 14079013
捐赠科研通 4433258
什么是DOI,文献DOI怎么找? 2434051
邀请新用户注册赠送积分活动 1426246
关于科研通互助平台的介绍 1404805