自编码
计算机科学
维数之咒
异常检测
人工智能
人工神经网络
深度学习
机器学习
功能(生物学)
模式识别(心理学)
随机梯度下降算法
数据挖掘
进化生物学
生物
作者
Amgad Muneer,Shakirah Mohd Taib,Suliman Mohamed Fati,Abdullateef Oluwagbemiga Balogun,Izzatdin Abdul Aziz
出处
期刊:Computers, materials & continua
日期:2022-01-01
卷期号:70 (3): 5363-5381
被引量:12
标识
DOI:10.32604/cmc.2022.021113
摘要
Anomaly detection in high dimensional data is a critical research issue with serious implication in the real-world problems. Many issues in this field still unsolved, so several modern anomaly detection methods struggle to maintain adequate accuracy due to the highly descriptive nature of big data. Such a phenomenon is referred to as the “curse of dimensionality” that affects traditional techniques in terms of both accuracy and performance. Thus, this research proposed a hybrid model based on Deep Autoencoder Neural Network (DANN) with five layers to reduce the difference between the input and output. The proposed model was applied to a real-world gas turbine (GT) dataset that contains 87620 columns and 56 rows. During the experiment, two issues have been investigated and solved to enhance the results. The first is the dataset class imbalance, which solved using SMOTE technique. The second issue is the poor performance, which can be solved using one of the optimization algorithms. Several optimization algorithms have been investigated and tested, including stochastic gradient descent (SGD), RMSprop, Adam and Adamax. However, Adamax optimization algorithm showed the best results when employed to train the DANN model. The experimental results show that our proposed model can detect the anomalies by efficiently reducing the high dimensionality of dataset with accuracy of 99.40%, F1-score of 0.9649, Area Under the Curve (AUC) rate of 0.9649, and a minimal loss function during the hybrid model training.
科研通智能强力驱动
Strongly Powered by AbleSci AI