An Application of AdaBoost-GRU Ensemble Model to Economic Time Series Prediction

阿达布思 计算机科学 均方误差 人工智能 时间序列 机器学习 集成学习 集合预报 计量经济学 统计 数学 分类器(UML)
作者
Ganiyu Adewale Busari,Nae Won Kwak,Dong Hoon Lim
出处
期刊:Indian journal of science and technology [Indian Society for Education and Environment]
卷期号:14 (31): 2557-2566 被引量:4
标识
DOI:10.17485/ijst/v14i31.1204
摘要

Objectives: Given the importance of accurate prediction of financial time series data and their benefits in the real-life, AdaBoost-GRU ensemble learning is proposed in which it’s forecasting accuracy is to be compared with AdaBoost-LSTM, single Long Short Term Memory (LSTM), and single Gated Recurrent Unit (GRU). Methods: The data for Korea Composite Stock Price Index (KOSPI) obtained from Naver Finance from January 2000 to April 2020, the Oil Price data for the entire Gyeongnam region among domestic oil price data obtained from Korea Petroleum Corporation (Opinet) and USD Exchange data provided by Naver Financial from April 2004 to May 2020 were employed. The analyses were made using mean absolute error (MAE), mean squared error (MSE) and root mean squared error (RMSE) as the performance metric. Findings: Empirical results show that the proposed method outperforms all other models that serve as benchmarked models, in all three kinds of data used in this research. This also shows that ensemble models have better performance than the single models as both AdaBoost-GRU and AdaBoost-LSTM outperform their respective single GRU and single LSTM. Novelty/Applications: This empirical study suggests that the AdaBoost-GRU ensemble-learning model is a highly promising approach for forecasting these kinds of data. However, another ensemble model that can combine AdaBoost with other single models such as ConvD1 can be developed and applied. Keywords: Oil Price; Exchange Rate; Stock Price Index; Time Series Forecasting; AdaBoost Algorithm; Gated Recurrent Unit
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助阔达的太阳采纳,获得10
3秒前
共享精神应助佳佳采纳,获得10
4秒前
善学以致用应助哦啦啦采纳,获得10
4秒前
Cartry完成签到,获得积分10
9秒前
ab完成签到,获得积分10
9秒前
9秒前
12秒前
13秒前
susu发布了新的文献求助10
13秒前
11111发布了新的文献求助10
18秒前
白羊发布了新的文献求助10
20秒前
美丽的谷芹完成签到,获得积分10
22秒前
hhhhhhh完成签到 ,获得积分10
22秒前
az完成签到,获得积分20
23秒前
susu完成签到,获得积分10
24秒前
研友_VZG7GZ应助狂野的天薇采纳,获得10
25秒前
英姑应助11111采纳,获得10
27秒前
奥一奥发布了新的文献求助10
27秒前
30秒前
racill完成签到 ,获得积分10
31秒前
33秒前
33秒前
充电宝应助jin采纳,获得10
34秒前
小马甲应助酶没美镁采纳,获得10
36秒前
cc完成签到,获得积分10
37秒前
迅速悟空完成签到,获得积分10
38秒前
开放大山发布了新的文献求助10
39秒前
41秒前
tnt22278完成签到 ,获得积分10
41秒前
ln完成签到 ,获得积分10
45秒前
科研通AI2S应助开放大山采纳,获得10
47秒前
研友_VZG7GZ应助四角水采纳,获得10
47秒前
刘莅完成签到 ,获得积分10
49秒前
Owen应助shain采纳,获得10
49秒前
steve完成签到 ,获得积分10
50秒前
BIT-ZJX完成签到,获得积分10
52秒前
静悄悄地麻倒你完成签到 ,获得积分10
53秒前
懵懂的灭男关注了科研通微信公众号
57秒前
可爱的函函应助wxx采纳,获得10
57秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161014
求助须知:如何正确求助?哪些是违规求助? 2812392
关于积分的说明 7895364
捐赠科研通 2471232
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094