An Application of AdaBoost-GRU Ensemble Model to Economic Time Series Prediction

阿达布思 计算机科学 均方误差 人工智能 时间序列 机器学习 集成学习 集合预报 计量经济学 统计 数学 分类器(UML)
作者
Ganiyu Adewale Busari,Nae Won Kwak,Dong Hoon Lim
出处
期刊:Indian journal of science and technology [Indian Society for Education and Environment]
卷期号:14 (31): 2557-2566 被引量:4
标识
DOI:10.17485/ijst/v14i31.1204
摘要

Objectives: Given the importance of accurate prediction of financial time series data and their benefits in the real-life, AdaBoost-GRU ensemble learning is proposed in which it’s forecasting accuracy is to be compared with AdaBoost-LSTM, single Long Short Term Memory (LSTM), and single Gated Recurrent Unit (GRU). Methods: The data for Korea Composite Stock Price Index (KOSPI) obtained from Naver Finance from January 2000 to April 2020, the Oil Price data for the entire Gyeongnam region among domestic oil price data obtained from Korea Petroleum Corporation (Opinet) and USD Exchange data provided by Naver Financial from April 2004 to May 2020 were employed. The analyses were made using mean absolute error (MAE), mean squared error (MSE) and root mean squared error (RMSE) as the performance metric. Findings: Empirical results show that the proposed method outperforms all other models that serve as benchmarked models, in all three kinds of data used in this research. This also shows that ensemble models have better performance than the single models as both AdaBoost-GRU and AdaBoost-LSTM outperform their respective single GRU and single LSTM. Novelty/Applications: This empirical study suggests that the AdaBoost-GRU ensemble-learning model is a highly promising approach for forecasting these kinds of data. However, another ensemble model that can combine AdaBoost with other single models such as ConvD1 can be developed and applied. Keywords: Oil Price; Exchange Rate; Stock Price Index; Time Series Forecasting; AdaBoost Algorithm; Gated Recurrent Unit
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QXK完成签到 ,获得积分10
2秒前
活泼莫英发布了新的文献求助10
2秒前
Dreamer0422发布了新的文献求助10
3秒前
粥粥顺利发布了新的文献求助10
4秒前
JingY完成签到,获得积分10
4秒前
赘婿应助笑点低的傲旋采纳,获得10
6秒前
可爱的函函应助斑马采纳,获得10
7秒前
shadow完成签到,获得积分10
7秒前
活泼莫英完成签到,获得积分20
9秒前
9秒前
hy完成签到 ,获得积分10
9秒前
归尘发布了新的文献求助10
10秒前
田様应助追寻荔枝采纳,获得10
10秒前
雪白凡梅完成签到 ,获得积分10
11秒前
13秒前
13秒前
14秒前
七羽完成签到 ,获得积分10
14秒前
14秒前
sunflower完成签到,获得积分20
15秒前
大个应助粥粥顺利采纳,获得10
15秒前
ssssxr发布了新的文献求助10
15秒前
16秒前
雨衣发布了新的文献求助10
17秒前
现实的水之完成签到 ,获得积分10
19秒前
19秒前
99668发布了新的文献求助10
19秒前
min完成签到,获得积分10
19秒前
20秒前
22秒前
22秒前
香蕉觅云应助seven采纳,获得10
23秒前
古月发布了新的文献求助10
24秒前
雨衣完成签到,获得积分10
25秒前
28秒前
aaaa发布了新的文献求助10
28秒前
能干的小笼包完成签到,获得积分20
28秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
李爱国应助古月采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956069
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107074
捐赠科研通 3232847
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870396
科研通“疑难数据库(出版商)”最低求助积分说明 802019