材料科学
锂(药物)
阴极
离子
空位缺陷
氧气
析氧
电子结构
X射线吸收光谱法
密度泛函理论
化学物理
吸收光谱法
化学工程
结晶学
电化学
电极
计算化学
物理化学
内分泌学
工程类
有机化学
化学
物理
医学
量子力学
作者
Shi Tao,Weifeng Huang,Shengqi Chu,Bin Qian,Li‐Juan Liu,Wei Xu
标识
DOI:10.1016/j.mtphys.2021.100403
摘要
Abstract Understanding structural evolution in lithium-rich layered oxidized composites (LLO) is fundamental to design improved cathode materials for rechargeable lithium-ion batteries (LIBs). In particular, retrieving quantitative structural parameters are essential factors to unveil the hidden phases or atomic orderings affecting the properties of LIBs. The oxygen-vacancies heterogeneity is revealed in 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 (LR-NCM) during de-lithiation process via rigid structural refinements. Through the in-situ/ex-situ X-ray absorption spectroscopy (XAS) in synergy with first principles calculations, the dynamic structural (and electronic) evolution of oxygen vacancies is confirmed to be in the form of MnO2 (represents vacancy site) for Li2MnO3 component. With the formation of oxygen vacancies in Li2MnO3 component, the oxygen-vacancy-bearing structure MnO2 also play significant supporting role on its parent structure without obvious Mn ions activity. This result offers new perspectives on synergistic improvement in the electronic and structural evolution, which is the key to design high energy density cathode materials for next-generation lithium ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI