MUFFIN: multi-scale feature fusion for drug–drug interaction prediction

计算机科学 图形 机器学习 特征学习 人工智能 药品 数据挖掘 代表(政治) 特征(语言学) 理论计算机科学 医学 政治 精神科 政治学 语言学 哲学 法学
作者
Yujie Chen,Tengfei Ma,Xixi Yang,Jianmin Wang,Bosheng Song,Xiangxiang Zeng
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:37 (17): 2651-2658 被引量:91
标识
DOI:10.1093/bioinformatics/btab169
摘要

Abstract Motivation Adverse drug–drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft features and lack generalization. Recently, the deep learning approaches that can automatically learn drug features from the molecular graph or drug-related network have improved the ability of computational models to predict unknown DDIs. However, previous works utilized large labeled data and merely considered the structure or sequence information of drugs without considering the relations or topological information between drug and other biomedical objects (e.g. gene, disease and pathway), or considered knowledge graph (KG) without considering the information from the drug molecular structure. Results Accordingly, to effectively explore the joint effect of drug molecular structure and semantic information of drugs in knowledge graph for DDI prediction, we propose a multi-scale feature fusion deep learning model named MUFFIN. MUFFIN can jointly learn the drug representation based on both the drug-self structure information and the KG with rich bio-medical information. In MUFFIN, we designed a bi-level cross strategy that includes cross- and scalar-level components to fuse multi-modal features well. MUFFIN can alleviate the restriction of limited labeled data on deep learning models by crossing the features learned from large-scale KG and drug molecular graph. We evaluated our approach on three datasets and three different tasks including binary-class, multi-class and multi-label DDI prediction tasks. The results showed that MUFFIN outperformed other state-of-the-art baselines. Availability and implementation The source code and data are available at https://github.com/xzenglab/MUFFIN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
玥越完成签到 ,获得积分10
1秒前
2秒前
3秒前
和颂完成签到 ,获得积分10
4秒前
陶醉的翅膀完成签到,获得积分10
4秒前
Z_Z完成签到,获得积分10
5秒前
Satellites完成签到,获得积分10
6秒前
zq发布了新的文献求助10
7秒前
123完成签到,获得积分10
8秒前
9秒前
DKL完成签到,获得积分10
10秒前
脑洞疼应助淡然的大碗采纳,获得10
10秒前
Forevere发布了新的文献求助10
12秒前
letter发布了新的文献求助10
14秒前
15秒前
钮小童发布了新的文献求助10
17秒前
105400155发布了新的文献求助10
17秒前
kuikichu完成签到,获得积分10
19秒前
李健的小迷弟应助Silence采纳,获得10
19秒前
20秒前
汛钥发布了新的文献求助10
21秒前
柚子完成签到 ,获得积分10
22秒前
22秒前
23秒前
丰富伯云发布了新的文献求助10
25秒前
25秒前
25秒前
25秒前
tianchanghao发布了新的文献求助10
26秒前
RNAPW发布了新的文献求助10
26秒前
卷卷516发布了新的文献求助10
27秒前
大圣完成签到 ,获得积分10
27秒前
zsy发布了新的文献求助10
28秒前
ceeray23应助阿德里亚诺采纳,获得10
30秒前
脑洞疼应助KBRS采纳,获得10
30秒前
30秒前
根瘤君发布了新的文献求助10
31秒前
bulubulubiu完成签到,获得积分10
32秒前
钮小童完成签到,获得积分20
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458881
求助须知:如何正确求助?哪些是违规求助? 3053611
关于积分的说明 9037134
捐赠科研通 2742777
什么是DOI,文献DOI怎么找? 1504556
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694537