亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In-silico development and assessment of a Kalman filter motor decoder for prosthetic hand control

卡尔曼滤波器 生物信息学 计算机科学 开发(拓扑) 扩展卡尔曼滤波器 人工智能 数学 化学 生物化学 基因 数学分析
作者
Mai Gamal,Mohamed H. Mousa,Seif Eldawlatly,Sherif M. Elbasiouny
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:132: 104353-104353 被引量:4
标识
DOI:10.1016/j.compbiomed.2021.104353
摘要

Up to 50% of amputees abandon their prostheses, partly due to rapid degradation of the control systems, which require frequent recalibration. The goal of this study was to develop a Kalman filter-based approach to decoding motoneuron activity to identify movement kinematics and thereby provide stable, long-term, accurate, real-time decoding. The Kalman filter-based decoder was examined via biologically varied datasets generated from a high-fidelity computational model of the spinal motoneuron pool. The estimated movement kinematics controlled a simulated MuJoCo prosthetic hand. This clear-box approach showed successful estimation of hand movements under eight varied physiological conditions with no retraining. The mean correlation coefficient of 0.98 and mean normalized root mean square error of 0.06 over these eight datasets provide proof of concept that this decoder would improve long-term integrity of performance while performing new, untrained movements. Additionally, the decoder operated in real-time (~0.3 ms). Further results include robust performance of the Kalman filter when re-trained to more severe post-amputation limitations in the type and number of motoneurons remaining. An additional analysis shows that the decoder achieves better accuracy when using the firing of individual motoneurons as input, compared to using aggregate pool firing. Moreover, the decoder demonstrated robustness to noise affecting both the trained decoder parameters and the decoded motoneuron activity. These results demonstrate the utility of a proof of concept Kalman filter decoder that can support prosthetics' control systems to maintain accurate and stable real-time movement performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QIN完成签到 ,获得积分10
7秒前
11秒前
liu完成签到 ,获得积分10
13秒前
与光完成签到 ,获得积分10
14秒前
3113129605完成签到 ,获得积分10
15秒前
单薄的誉完成签到,获得积分10
18秒前
23秒前
schen完成签到 ,获得积分10
23秒前
24秒前
JamesPei应助啊呜0u0采纳,获得30
26秒前
guan发布了新的文献求助10
30秒前
37秒前
星辰大海应助guan采纳,获得10
38秒前
星星完成签到 ,获得积分10
38秒前
40秒前
1分钟前
嗨Honey完成签到 ,获得积分10
1分钟前
1分钟前
悄悄拔尖儿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
基金中中中完成签到,获得积分10
1分钟前
bingbing完成签到,获得积分10
1分钟前
1分钟前
1分钟前
阔达的向南完成签到,获得积分10
1分钟前
杳鸢应助个性的小丸子采纳,获得10
1分钟前
杳鸢应助个性的小丸子采纳,获得10
1分钟前
1分钟前
三叔完成签到,获得积分0
1分钟前
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455618
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022875
捐赠科研通 2739402
什么是DOI,文献DOI怎么找? 1502731
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387