已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PINNeik: Eikonal solution using physics-informed neural networks

Eikonal方程 解算器 计算机科学 计算 人工神经网络 应用数学 偏微分方程 Eikonal近似 加权 数学优化 算法 物理 数学 数学分析 人工智能 声学
作者
Umair bin Waheed,Ehsan Haghighat,Tariq Alkhalifah,Chao Song,Qi Hao
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:155: 104833-104833 被引量:110
标识
DOI:10.1016/j.cageo.2021.104833
摘要

The eikonal equation is utilized across a wide spectrum of science and engineering disciplines. In seismology, it regulates seismic wave traveltimes needed for applications like source localization, imaging, and inversion. Several numerical algorithms have been developed over the years to solve the eikonal equation. However, these methods require considerable modifications to incorporate additional physics, such as anisotropy, and may even breakdown for certain complex forms of the eikonal equation, requiring approximation methods. Moreover, they suffer from computational bottleneck when repeated computations are needed for perturbations in the velocity model and/or the source location, particularly in large 3D models. Here, we propose an algorithm to solve the eikonal equation based on the emerging paradigm of physics-informed neural networks (PINNs). By minimizing a loss function formed by imposing the eikonal equation, we train a neural network to output traveltimes that are consistent with the underlying partial differential equation. We observe sufficiently high traveltime accuracy for most applications of interest. We also demonstrate how the proposed algorithm harnesses machine learning techniques like transfer learning and surrogate modeling to speed up traveltime computations for updated velocity models and source locations. Furthermore, we use a locally adaptive activation function and adaptive weighting of the terms in the loss function to improve convergence rate and solution accuracy. We also show the flexibility of the method in incorporating medium anisotropy and free-surface topography compared to conventional methods that require significant algorithmic modifications. These properties of the proposed PINN eikonal solver are highly desirable in obtaining a flexible and efficient forward modeling engine for seismological applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mnwkwcj发布了新的文献求助20
1秒前
yang完成签到,获得积分10
3秒前
聪明勇敢有力气完成签到 ,获得积分10
3秒前
4秒前
6秒前
blueskyzhi完成签到,获得积分10
7秒前
Sherlock完成签到,获得积分10
8秒前
莱芙发布了新的文献求助10
9秒前
孤独的大灰狼完成签到 ,获得积分10
10秒前
10秒前
凤里完成签到 ,获得积分10
12秒前
雷清宇发布了新的文献求助10
12秒前
Lucifer完成签到,获得积分10
14秒前
缓慢海蓝完成签到 ,获得积分10
16秒前
烨枫晨曦完成签到,获得积分10
16秒前
干净思远完成签到,获得积分10
19秒前
destindr完成签到,获得积分20
19秒前
陈炜smile完成签到,获得积分10
22秒前
23秒前
Cheems完成签到,获得积分10
23秒前
小绵羊完成签到,获得积分10
24秒前
芒芒发paper完成签到 ,获得积分10
25秒前
辣椒完成签到 ,获得积分10
25秒前
destindr发布了新的文献求助10
26秒前
28秒前
29秒前
天天快乐应助xiaofeixia采纳,获得50
32秒前
松间蓝雾关注了科研通微信公众号
33秒前
现代哑铃发布了新的文献求助100
34秒前
34秒前
36秒前
36秒前
小巧谷波应助玉衡采纳,获得10
41秒前
41秒前
黑森林发布了新的文献求助10
41秒前
42秒前
量子星尘发布了新的文献求助10
43秒前
现代哑铃完成签到,获得积分10
44秒前
烂漫含雁发布了新的文献求助10
46秒前
万事屋完成签到 ,获得积分10
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956940
求助须知:如何正确求助?哪些是违规求助? 3502979
关于积分的说明 11110880
捐赠科研通 3233958
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234