PINNeik: Eikonal solution using physics-informed neural networks

Eikonal方程 解算器 计算机科学 计算 人工神经网络 应用数学 偏微分方程 Eikonal近似 加权 数学优化 算法 物理 数学 数学分析 人工智能 声学
作者
Umair bin Waheed,Ehsan Haghighat,Tariq Alkhalifah,Chao Song,Qi Hao
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:155: 104833-104833 被引量:110
标识
DOI:10.1016/j.cageo.2021.104833
摘要

The eikonal equation is utilized across a wide spectrum of science and engineering disciplines. In seismology, it regulates seismic wave traveltimes needed for applications like source localization, imaging, and inversion. Several numerical algorithms have been developed over the years to solve the eikonal equation. However, these methods require considerable modifications to incorporate additional physics, such as anisotropy, and may even breakdown for certain complex forms of the eikonal equation, requiring approximation methods. Moreover, they suffer from computational bottleneck when repeated computations are needed for perturbations in the velocity model and/or the source location, particularly in large 3D models. Here, we propose an algorithm to solve the eikonal equation based on the emerging paradigm of physics-informed neural networks (PINNs). By minimizing a loss function formed by imposing the eikonal equation, we train a neural network to output traveltimes that are consistent with the underlying partial differential equation. We observe sufficiently high traveltime accuracy for most applications of interest. We also demonstrate how the proposed algorithm harnesses machine learning techniques like transfer learning and surrogate modeling to speed up traveltime computations for updated velocity models and source locations. Furthermore, we use a locally adaptive activation function and adaptive weighting of the terms in the loss function to improve convergence rate and solution accuracy. We also show the flexibility of the method in incorporating medium anisotropy and free-surface topography compared to conventional methods that require significant algorithmic modifications. These properties of the proposed PINN eikonal solver are highly desirable in obtaining a flexible and efficient forward modeling engine for seismological applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lihaifeng完成签到,获得积分10
1秒前
Aaernan完成签到 ,获得积分10
2秒前
科研通AI2S应助666采纳,获得10
2秒前
2秒前
2秒前
3秒前
缓慢冬莲发布了新的文献求助10
3秒前
今后应助minrui采纳,获得10
3秒前
Wududu完成签到,获得积分10
5秒前
Hedone发布了新的文献求助30
5秒前
6秒前
宋嘉新发布了新的文献求助10
9秒前
9秒前
zhangwei应助梓ccc采纳,获得10
10秒前
奋斗夏真完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
12秒前
缓慢小熊猫完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
Jase发布了新的文献求助10
14秒前
缓慢冬莲完成签到,获得积分10
15秒前
15秒前
15秒前
飞哥发布了新的文献求助10
17秒前
奋斗夏真发布了新的文献求助10
17秒前
woyufengtian完成签到,获得积分10
18秒前
风中画板完成签到,获得积分10
18秒前
minrui发布了新的文献求助10
18秒前
儒雅的翎完成签到,获得积分10
19秒前
20秒前
20秒前
乔宇发布了新的文献求助10
21秒前
21秒前
22秒前
动人的蝴蝶完成签到,获得积分20
24秒前
852应助自然的钻石采纳,获得10
25秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147903
求助须知:如何正确求助?哪些是违规求助? 2798930
关于积分的说明 7832525
捐赠科研通 2455943
什么是DOI,文献DOI怎么找? 1307025
科研通“疑难数据库(出版商)”最低求助积分说明 627966
版权声明 601587