PINNeik: Eikonal solution using physics-informed neural networks

Eikonal方程 解算器 计算机科学 计算 人工神经网络 应用数学 偏微分方程 Eikonal近似 加权 数学优化 算法 物理 数学 数学分析 人工智能 声学
作者
Umair bin Waheed,Ehsan Haghighat,Tariq Alkhalifah,Chao Song,Qi Hao
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:155: 104833-104833 被引量:110
标识
DOI:10.1016/j.cageo.2021.104833
摘要

The eikonal equation is utilized across a wide spectrum of science and engineering disciplines. In seismology, it regulates seismic wave traveltimes needed for applications like source localization, imaging, and inversion. Several numerical algorithms have been developed over the years to solve the eikonal equation. However, these methods require considerable modifications to incorporate additional physics, such as anisotropy, and may even breakdown for certain complex forms of the eikonal equation, requiring approximation methods. Moreover, they suffer from computational bottleneck when repeated computations are needed for perturbations in the velocity model and/or the source location, particularly in large 3D models. Here, we propose an algorithm to solve the eikonal equation based on the emerging paradigm of physics-informed neural networks (PINNs). By minimizing a loss function formed by imposing the eikonal equation, we train a neural network to output traveltimes that are consistent with the underlying partial differential equation. We observe sufficiently high traveltime accuracy for most applications of interest. We also demonstrate how the proposed algorithm harnesses machine learning techniques like transfer learning and surrogate modeling to speed up traveltime computations for updated velocity models and source locations. Furthermore, we use a locally adaptive activation function and adaptive weighting of the terms in the loss function to improve convergence rate and solution accuracy. We also show the flexibility of the method in incorporating medium anisotropy and free-surface topography compared to conventional methods that require significant algorithmic modifications. These properties of the proposed PINN eikonal solver are highly desirable in obtaining a flexible and efficient forward modeling engine for seismological applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡南霜发布了新的文献求助10
1秒前
神勇的雅香完成签到,获得积分0
1秒前
JWang发布了新的文献求助10
1秒前
2秒前
2秒前
LYM发布了新的文献求助10
3秒前
纸上彩虹完成签到 ,获得积分10
3秒前
调研昵称发布了新的文献求助10
3秒前
3秒前
rosy发布了新的文献求助10
3秒前
Ming完成签到,获得积分10
3秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得30
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
prosperp应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
Enso完成签到 ,获得积分10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
难过的翎应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
中级中级发布了新的文献求助10
5秒前
大个应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
丸子完成签到,获得积分10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
难过的翎应助科研通管家采纳,获得10
5秒前
飞快的语蕊完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
小蘑菇应助xqwwqx采纳,获得10
6秒前
情怀应助沙111采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678