Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels

材料科学 位错 打滑(空气动力学) 马氏体 平面的 硬化(计算) 格子(音乐) 应变硬化指数 微观结构 沉淀硬化 复合材料 冶金 凝聚态物理 结晶学 热力学 物理 计算机图形学(图像) 计算机科学 化学 声学 图层(电子)
作者
Suihe Jiang,Xiangqi Xu,W. Li,Bo Peng,Yidong Wu,Xiongjun Liu,Hui Wang,X.Z. Wang,Zhaoping Lü
出处
期刊:Acta Materialia [Elsevier]
卷期号:213: 116984-116984 被引量:57
标识
DOI:10.1016/j.actamat.2021.116984
摘要

Strengthening from single lattice defect such as dislocations or nanoprecipitates generally leads to the so-called strength-ductility tradeoff, which becomes particularly pronounced at the strength level of above 2 GPa. Herein, we report a sustainable strain-hardening mechanism in ultrahigh-strength martensitic steels via manipulating interaction among different lattice defects. We show that fast precipitation of low-misfit B2-ordered Ni(Al, Fe) could efficiently prevent dense quench-in dislocations from recovery. During plastic deformation, the high cutting stress created by the ordered nanoprecipitates not only allows numerous retained dislocations to become mobile in planar mode, but also substantially expands the mean free path for dislocation movement in a heavily dislocated martensite. Simultaneously, the planar slips cause severe dislocation reactions with the pre-existing dislocations, which timely recover local cutting stress that has been weakened by cutting of the precipitates. This sort of timely established cutting stress minimizes simultaneously degree of slip concentration and magnitude of stored co-planar dislocations within planar slip bands while promoting pronounced band refinement as the main strain hardening mechanism, which gave rise to the simultaneous increment of the yield strength (2 GPa) and elongation to failure (9%). The current findings provide a possible means of simultaneously enhancing strength and ductility through tailoring the interplay among different types of lattice defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木亢完成签到,获得积分10
2秒前
2秒前
笑点低完成签到,获得积分10
2秒前
甜甜醉波发布了新的文献求助10
2秒前
星辰大海应助jennyyu采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得30
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
压缩应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
charles发布了新的文献求助10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
FashionBoy应助云_123采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
陈军应助科研通管家采纳,获得20
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
至乐无乐发布了新的文献求助30
5秒前
好心情关注了科研通微信公众号
5秒前
明亮寻绿完成签到,获得积分20
5秒前
Denmark发布了新的文献求助10
6秒前
6秒前
星辰大海应助无心的青槐采纳,获得10
8秒前
9秒前
明亮寻绿发布了新的文献求助10
9秒前
10秒前
烟花应助友好的小虾米采纳,获得10
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135273
求助须知:如何正确求助?哪些是违规求助? 2786262
关于积分的说明 7776475
捐赠科研通 2442202
什么是DOI,文献DOI怎么找? 1298495
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847