Power prediction of a wind farm cluster based on spatiotemporal correlations

风力发电 人工神经网络 计算机科学 风速 电力系统 星团(航天器) 功率(物理) 气象学 数据挖掘 环境科学 工程类 人工智能 地理 物理 电气工程 量子力学 程序设计语言
作者
Jiaan Zhang,Dong Liu,Zhijun Li,Xu Han,Hui Liu,Cun Dong,Junyan Wang,Chenyu Liu,Yunpeng Xia
出处
期刊:Applied Energy [Elsevier BV]
卷期号:302: 117568-117568 被引量:54
标识
DOI:10.1016/j.apenergy.2021.117568
摘要

Accurate power prediction of wind farm clusters is important for safe and economic operation of power systems with high wind power penetration. Current superposition and statistical scaling methods used in wind power prediction systems do not fully consider the relationships among wind farms in a cluster, thereby leading to insufficient power prediction accuracies. To improve the power prediction accuracy of wind farm clusters, a new method based on spatiotemporal correlations is proposed herein. First, three correlation coefficients are used to represent spatiotemporal correlation characteristics of wind farms in a wind cluster. The Shapley value method is used to weight these coefficients, and a standard wind farm is found by combining the nominal capacities of the wind farms. Then, considering the spatiotemporal factors that affect wind power generation, a characteristic matrix of the wind farm cluster is constructed, and the key characteristics are extracted using a convolutional neural network (CNN). Considering the time series characteristics of wind power generation, a long and short term memory (LSTM) neural network is used to establish the mapping relationship between key characteristics and power generation, and power prediction of a wind farm cluster is performed. Finally, by utilizing the actual operating data of wind farm clusters in North China as an example, feasibility and effectiveness of the proposed method are verified. The proposed system provides a new high-precision method for future wind farm cluster power predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助student采纳,获得10
2秒前
温洪玲完成签到,获得积分20
2秒前
领导范儿应助Wuwuwu采纳,获得10
2秒前
郭亮发布了新的文献求助10
4秒前
5秒前
动听千秋完成签到 ,获得积分10
6秒前
欣慰薯片发布了新的文献求助10
6秒前
hzwdm1发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
JavedAli完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
吸墨发布了新的文献求助50
11秒前
12秒前
12秒前
吸墨发布了新的文献求助10
12秒前
吸墨发布了新的文献求助10
12秒前
吸墨发布了新的文献求助10
12秒前
water完成签到,获得积分10
12秒前
吸墨发布了新的文献求助10
12秒前
吸墨发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578224
求助须知:如何正确求助?哪些是违规求助? 3997171
关于积分的说明 12374791
捐赠科研通 3671317
什么是DOI,文献DOI怎么找? 2023340
邀请新用户注册赠送积分活动 1057301
科研通“疑难数据库(出版商)”最低求助积分说明 944261