Power prediction of a wind farm cluster based on spatiotemporal correlations

风力发电 人工神经网络 计算机科学 风速 电力系统 星团(航天器) 功率(物理) 气象学 数据挖掘 环境科学 工程类 人工智能 地理 物理 电气工程 量子力学 程序设计语言
作者
Jiaan Zhang,Dong Liu,Zhijun Li,Xu Han,Hui Liu,Cun Dong,Junyan Wang,Chenyu Liu,Yunpeng Xia
出处
期刊:Applied Energy [Elsevier BV]
卷期号:302: 117568-117568 被引量:54
标识
DOI:10.1016/j.apenergy.2021.117568
摘要

Accurate power prediction of wind farm clusters is important for safe and economic operation of power systems with high wind power penetration. Current superposition and statistical scaling methods used in wind power prediction systems do not fully consider the relationships among wind farms in a cluster, thereby leading to insufficient power prediction accuracies. To improve the power prediction accuracy of wind farm clusters, a new method based on spatiotemporal correlations is proposed herein. First, three correlation coefficients are used to represent spatiotemporal correlation characteristics of wind farms in a wind cluster. The Shapley value method is used to weight these coefficients, and a standard wind farm is found by combining the nominal capacities of the wind farms. Then, considering the spatiotemporal factors that affect wind power generation, a characteristic matrix of the wind farm cluster is constructed, and the key characteristics are extracted using a convolutional neural network (CNN). Considering the time series characteristics of wind power generation, a long and short term memory (LSTM) neural network is used to establish the mapping relationship between key characteristics and power generation, and power prediction of a wind farm cluster is performed. Finally, by utilizing the actual operating data of wind farm clusters in North China as an example, feasibility and effectiveness of the proposed method are verified. The proposed system provides a new high-precision method for future wind farm cluster power predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whutpzy发布了新的文献求助10
刚刚
跳不起来的大神完成签到 ,获得积分10
刚刚
汉堡包应助sabrina采纳,获得10
刚刚
殷欣完成签到,获得积分10
刚刚
蓝色斑马发布了新的文献求助10
1秒前
1秒前
刘赟完成签到,获得积分20
1秒前
1秒前
renlangfen发布了新的文献求助10
2秒前
2秒前
2秒前
李Li发布了新的文献求助10
3秒前
小曹硕士完成签到,获得积分20
3秒前
4秒前
机灵魂幽发布了新的文献求助10
4秒前
研友_8QyXr8完成签到,获得积分10
4秒前
5秒前
Niuniu完成签到,获得积分10
5秒前
5秒前
欣慰半梦发布了新的文献求助10
5秒前
6秒前
JamesPei应助Dicclll采纳,获得10
6秒前
Lavandula完成签到 ,获得积分10
6秒前
大方绿蕊发布了新的文献求助10
6秒前
7788999完成签到,获得积分10
7秒前
7秒前
8秒前
YangSY发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
0109发布了新的文献求助10
8秒前
8秒前
受伤的水瑶完成签到,获得积分10
9秒前
巩泓辰完成签到,获得积分10
9秒前
宋宇骐完成签到,获得积分10
10秒前
小瑞完成签到 ,获得积分10
10秒前
ZOE应助白桃味的夏采纳,获得20
10秒前
AAA发布了新的文献求助10
11秒前
11秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907