蛋白质稳态
线粒体DNA
生物
单倍群
线粒体
遗传学
人线粒体DNA单倍型
人类线粒体遗传学
细胞生物学
基因
单倍型
等位基因
作者
Na Cai,Aurora Gómez-Durán,Ekaterina Yonova‐Doing,Kousik Kundu,A I Burgess,Zoe Golder,Claudia Calabrese,Marc Jan Bonder,Marta Camacho,Rachael A. Lawson,Lixin Li,Caroline H. Williams‐Gray,Emanuele Di Angelantonio,David J. Roberts,Nick Watkins,Willem H. Ouwehand,Adam S. Butterworth,Isobel D. Stewart,Maik Pietzner,Nicholas J. Wareham
出处
期刊:Nature Medicine
[Nature Portfolio]
日期:2021-08-23
卷期号:27 (9): 1564-1575
被引量:60
标识
DOI:10.1038/s41591-021-01441-3
摘要
Mitochondrial DNA (mtDNA) variants influence the risk of late-onset human diseases, but the reasons for this are poorly understood. Undertaking a hypothesis-free analysis of 5,689 blood-derived biomarkers with mtDNA variants in 16,220 healthy donors, here we show that variants defining mtDNA haplogroups Uk and H4 modulate the level of circulating N-formylmethionine (fMet), which initiates mitochondrial protein translation. In human cytoplasmic hybrid (cybrid) lines, fMet modulated both mitochondrial and cytosolic proteins on multiple levels, through transcription, post-translational modification and proteolysis by an N-degron pathway, abolishing known differences between mtDNA haplogroups. In a further 11,966 individuals, fMet levels contributed to all-cause mortality and the disease risk of several common cardiovascular disorders. Together, these findings indicate that fMet plays a key role in common age-related disease through pleiotropic effects on cell proteostasis. The association between certain mitochondrial DNA variants and increased risk of late-onset diseases in humans could be explained by a direct role of mitochondrial DNA in the regulation of cellular proteostasis.
科研通智能强力驱动
Strongly Powered by AbleSci AI