The experimental data support the hypothesis that extremely low frequency magnetic field (ELF-MF) can affect cell membranes. Since our previous studies suggested that MF changes the permeability of cell membrane, in this study we focused on the cell membrane and investigated the effect of 60 Hz, 50 mT MF on the membrane potential and membrane proteins. The membrane potentials of three cultured human cancer cell lines, A549, MES-SA, and MES-SA/Dx5, were increased by exposure to ELF-MF. When exposed to MF and an anticancer drug, changes in the membrane potentials were detected in A549 and MES-SA cells, but not in the multi drug-resistant cells, MES-SA/Dx5. We examined whether MF has an influence on the membrane proteins extracted from cultured A549 cells, using DiBAC4(3) dye enhanced fluorescence binding to a hydrophobic site. The increase in fluorescence observed following MF exposure for 10 min indicated that the structure of the hydrophobic site on the membrane proteins changed and became more likely to bind the probe dye. A decrease in fluorescence was detected following exposure to MF for 240 min. These results indicated that 60 Hz, 50 mT MF causes changes in the membrane potential of cultured cancer cells and the conformation of membrane proteins extracted from cultured cancer cells, and has different effects depending on the exposure time.