质子交换膜燃料电池
丙烯酸
催化作用
材料科学
X射线吸收光谱法
部分
吸附
聚合物
离子交换
吸收光谱法
马来酸
高分子化学
结合能
金属
共聚物
无机化学
物理化学
离子
化学
立体化学
有机化学
复合材料
核物理学
冶金
量子力学
物理
作者
Zhengpei Miao,Xiaoming Wang,Zhonglong Zhao,Wenbin Zuo,Shaoqing Chen,Zhiqiang Li,Yanghua He,Jiashun Liang,Feng Ma,Hsing‐Lin Wang,Gang Lü,Yunhui Huang,Gang Wu,Qing Li
标识
DOI:10.1002/adma.202006613
摘要
Abstract An effective and universal strategy is developed to enhance the stability of the non‐noble‐metal M–N x /C catalyst in proton exchange membrane fuel cells (PEMFCs) by improving the bonding strength between metal ions and chelating polymers, i.e., poly(acrylic acid) (PAA) homopolymer and poly(acrylic acid–maleic acid) (P(AA‐MA)) copolymer with different AA/MA ratios. Mössbauer spectroscopy and X‐ray absorption spectroscopy (XAS) reveal that the optimal P(AA‐MA)–Fe–N catalyst with a higher Fe 3+ –polymer binding constant possesses longer FeN bonds and exclusive Fe–N 4 /C moiety compared to PAA–Fe–N, which consists of ≈15% low‐coordinated Fe–N 2 /N 3 structures. The optimized P(AA‐MA)–Fe–N catalyst exhibits outstanding ORR activity and stability in both half‐cell and PEMFC cathodes, with the retention rate of current density approaching 100% for the first 37 h at 0.55 V in an H 2 –air fuel cell. Density functional theory (DFT) calculations suggest that the Fe–N 4 /C site could optimize the difference between the adsorption energy of the Fe atoms on the support ( E ad ) and the bulk cohesive energy ( E coh ) relative to Fe–N 2 /N 3 moieties, thereby strongly stabilizing Fe centers against demetalation.
科研通智能强力驱动
Strongly Powered by AbleSci AI