Heat transport in liquid water from first-principles and deep neural network simulations

热导率 密度泛函理论 物理 人工神经网络 统计物理学 应用数学 热力学 计算机科学 量子力学 数学 人工智能
作者
Davide Tisi,Linfeng Zhang,Riccardo Bertossa,Han Wang,Roberto Car,Stefano Baroni
出处
期刊:Physical review [American Physical Society]
卷期号:104 (22) 被引量:55
标识
DOI:10.1103/physrevb.104.224202
摘要

We compute the thermal conductivity of water within linear response theory from equilibrium molecular dynamics simulations, by adopting two different approaches. In one, the potential energy surface (PES) is derived on the fly from the electronic ground state of density functional theory (DFT) and the corresponding analytical expression is used for the energy flux. In the other, the PES is represented by a deep neural network (DNN) trained on DFT data, whereby the PES has an explicit local decomposition and the energy flux takes a particularly simple expression. By virtue of a gauge invariance principle, established by Marcolongo, Umari, and Baroni, the two approaches should be equivalent if the PES were reproduced accurately by the DNN model. We test this hypothesis by calculating the thermal conductivity, at the GGA (PBE) level of theory, using the direct formulation and its DNN proxy, finding that both approaches yield the same conductivity, in excess of the experimental value by approximately 60%. Besides being numerically much more efficient than its direct DFT counterpart, the DNN scheme has the advantage of being easily applicable to more sophisticated DFT approximations, such as meta-GGA and hybrid functionals, for which it would be hard to derive analytically the expression of the energy flux. We find in this way that a DNN model, trained on meta-GGA (SCAN) data, reduces the deviation from experiment of the predicted thermal conductivity by about 50%, leaving the question open as to whether the residual error is due to deficiencies of the functional, to a neglect of nuclear quantum effects in the atomic dynamics, or, likely, to a combination of the two.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiawanren00完成签到,获得积分10
刚刚
刚刚
1秒前
大秦帝国完成签到,获得积分10
1秒前
夏轩FromHard完成签到,获得积分10
1秒前
yn发布了新的文献求助10
1秒前
William完成签到 ,获得积分10
2秒前
2秒前
happiness完成签到 ,获得积分10
2秒前
谨慎纸飞机完成签到,获得积分10
2秒前
yao完成签到,获得积分10
2秒前
3秒前
3秒前
SciGPT应助ranran采纳,获得10
3秒前
歡禧完成签到,获得积分10
4秒前
4秒前
科研小迷糊完成签到,获得积分10
4秒前
十六发布了新的文献求助10
4秒前
小甑发布了新的文献求助10
5秒前
大个应助半疯半癫采纳,获得30
5秒前
CodeCraft应助应天亦采纳,获得30
5秒前
5秒前
火星上藏鸟完成签到,获得积分10
5秒前
5秒前
wangxuan完成签到,获得积分10
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
ludong_0应助科研通管家采纳,获得10
7秒前
7秒前
缓慢如南应助科研通管家采纳,获得10
7秒前
缓慢如南应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
ludong_0应助科研通管家采纳,获得10
7秒前
缓慢如南应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
7秒前
古往今来应助科研通管家采纳,获得20
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582