Performance of radiomics models for tumour-infiltrating lymphocyte (TIL) prediction in breast cancer: the role of the dynamic contrast-enhanced (DCE) MRI phase

无线电技术 列线图 医学 乳腺癌 乳房磁振造影 磁共振成像 放射科 Lasso(编程语言) 特征(语言学) 神经组阅片室 肿瘤科 内科学 人工智能 癌症 乳腺摄影术 计算机科学 哲学 万维网 精神科 语言学 神经学
作者
Wenjie Tang,Qingcong Kong,Zixuan Cheng,Yunshi Liang,Zhe Jin,Lei-Xin Chen,Wen-Ke Hu,Yingying Liang,Xinhua Wei,Yuan Guo,Xinqing Jiang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (2): 864-875 被引量:33
标识
DOI:10.1007/s00330-021-08173-5
摘要

To systematically investigate the effect of imaging features at different DCE-MRI phases to optimise a radiomics model based on DCE-MRI for the prediction of tumour-infiltrating lymphocyte (TIL) levels in breast cancer.This study retrospectively collected 133 patients with pathologically proven breast cancer, including 73 patients with low TIL levels and 60 patients with high TIL levels. The volumes of breast cancer lesions were manually delineated on T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and each phase of DCE-MRI, followed by 6250 quantitative feature extractions. The least absolute shrinkage and selection operator (LASSO) method was used to select predictive feature sets for the classifiers. Four models were developed for predicting TILs: (1) single enhanced phase radiomics models; (2) fusion enhanced multi-phase radiomics models; (3) fusion multi-sequence radiomics models; and (4) a combined radiomics-based clinical model.Image features extracted from the delayed phase MRI, especially DCE_Phase 6 (DCE_P6), demonstrated dominant predictive performances over features from other phases. The fusion multi-sequence radiomics model and combined radiomics-based clinical model achieved the highest predictive performances with areas under the curve (AUCs) of 0.934 and 0.950, respectively; however, the differences were not statistically significant.The DCE-MRI radiomics model, especially image features extracted from the delayed phases, can help improve the performance in predicting TILs. The radiomics nomogram is effective in predicting TILs in breast cancer.• Radiomics features extracted from DCE-MRI, especially delayed phase images, help predict TIL levels in breast cancer. • We developed a nomogram based on MRI to predict TILs in breast cancer that achieved the highest AUC of 0.950.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
112发布了新的文献求助10
1秒前
1秒前
2秒前
乌云完成签到,获得积分10
2秒前
2秒前
打打应助hwezhu采纳,获得10
3秒前
3秒前
David完成签到 ,获得积分10
4秒前
秭归子归完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
科目三应助Ztx采纳,获得10
7秒前
Gyrfalcon发布了新的文献求助10
7秒前
8秒前
8秒前
妞妞完成签到,获得积分10
8秒前
9秒前
ooo发布了新的文献求助10
9秒前
舍曲林发布了新的文献求助10
9秒前
司空蓝完成签到,获得积分10
10秒前
凶狠的绝山完成签到,获得积分10
10秒前
璐宝完成签到,获得积分10
11秒前
司空蓝发布了新的文献求助10
13秒前
秋夏发布了新的文献求助10
14秒前
I7完成签到,获得积分20
14秒前
Jelly完成签到,获得积分20
14秒前
咯咯咯完成签到 ,获得积分10
14秒前
乐乐应助小杜在此采纳,获得10
15秒前
15秒前
小马甲应助高兴电脑采纳,获得10
15秒前
jal完成签到,获得积分20
15秒前
李健的小迷弟应助君莫笑采纳,获得10
16秒前
16秒前
17秒前
EED发布了新的文献求助10
17秒前
白告发布了新的文献求助10
19秒前
20秒前
hwezhu发布了新的文献求助10
21秒前
雨雨雨雨发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496