Big data analytics capability for improved performance of higher education institutions in the Era of IR 4.0: A multi-analytical SEM & ANN perspective.

大数据 计算机科学 背景(考古学) 数据科学 分析 知识管理 高等教育 结构方程建模 数据挖掘 机器学习 政治学 生物 古生物学 法学
作者
Mohamed Azlan Ashaari,Karpal Singh Dara Singh,Ghazanfar Ali Abbasi,Azlan Amran,Francisco Liébana‐Cabanillas
出处
期刊:Technological Forecasting and Social Change [Elsevier BV]
卷期号:173: 121119-121119 被引量:104
标识
DOI:10.1016/j.techfore.2021.121119
摘要

Despite the growing interest towards big data within higher education institutions (HEI), research on big data analytics capability within the HEI context is somewhat limited. This study's main objective is to have a better understanding of the utilisation of big data analytics capability for data-driven decision-making to achieve better performance from Malaysian HEIs. Despite the growing interest towards big data within higher education institutions (HEI), research on big data analytics capability within the HEI context is rather limited. This study's main objective is to have a better understanding of the utilisation of big data analytics capability for data-driven decision-making to achieve better performance from Malaysian HEIs. This study validates an integrative model by combining information processing theory and resource-based view theory. Unlike extant literature, this study proposed methodology involving dual-stage analysis involving of Partial Least Squares Structural Equation Modelling and evolving Artificial Intelligence named deep learning (Artificial Neural Network) were performed. The application of deep ANN architecture can predict 83% of accuracy for the proposed model. Besides, the outcome of data-driven decision making from the relationship between big data analytic capability and data-driven decision making towards the performance of HEIs has significant findings. Results revealed that data-driven decision making could positively play an essential role in the relationship between big data analytic capability and performance of HEIs. Theoretically, the newly integrated theoretical model that incorporates information processing theory and resource-based view provides useful guidelines to HEI's about the crucial capabilities and resources that must be put into place to reap the benefits associated with big data implementations in the wake of Industry Revolution 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上昊焱完成签到 ,获得积分10
1秒前
garden发布了新的文献求助10
2秒前
2秒前
我爱学习完成签到,获得积分10
2秒前
panpanliumin完成签到,获得积分0
3秒前
3秒前
细心香烟完成签到 ,获得积分10
4秒前
4秒前
wlscj完成签到,获得积分10
4秒前
华仔应助大意的豌豆采纳,获得10
4秒前
5秒前
5秒前
隐形曼青应助健忘芹采纳,获得10
5秒前
小马甲应助拼搏的无颜采纳,获得10
5秒前
6秒前
garden完成签到,获得积分10
6秒前
peace发布了新的文献求助10
8秒前
欣慰的小甜瓜完成签到 ,获得积分10
8秒前
9秒前
zsp发布了新的文献求助10
9秒前
zlc发布了新的文献求助10
9秒前
10秒前
瞿qks完成签到,获得积分10
12秒前
13秒前
拼搏的无颜完成签到,获得积分10
13秒前
肖遥发布了新的文献求助10
13秒前
Raven应助咩啊咩吖采纳,获得10
13秒前
14秒前
有钱发布了新的文献求助10
15秒前
BiuBiu怪完成签到,获得积分10
15秒前
15秒前
我是老大应助文闵采纳,获得50
17秒前
17秒前
小艾发布了新的文献求助10
17秒前
18秒前
WTaMi发布了新的文献求助10
18秒前
汉堡包应助Chen采纳,获得10
19秒前
壮观的书包完成签到,获得积分10
20秒前
pretty完成签到 ,获得积分10
20秒前
小怪兽发布了新的文献求助10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544