Big data analytics capability for improved performance of higher education institutions in the Era of IR 4.0: A multi-analytical SEM & ANN perspective.

大数据 计算机科学 背景(考古学) 数据科学 分析 知识管理 高等教育 结构方程建模 基于资源的视图 数据挖掘 机器学习 业务 营销 政治学 生物 古生物学 法学 竞争优势
作者
Mohamed Azlan Ashaari,Karpal Singh Dara Singh,Ghazanfar Ali Abbasi,Azlan Amran,Francisco Liébana‐Cabanillas
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:173: 121119-121119 被引量:71
标识
DOI:10.1016/j.techfore.2021.121119
摘要

Despite the growing interest towards big data within higher education institutions (HEI), research on big data analytics capability within the HEI context is somewhat limited. This study's main objective is to have a better understanding of the utilisation of big data analytics capability for data-driven decision-making to achieve better performance from Malaysian HEIs. Despite the growing interest towards big data within higher education institutions (HEI), research on big data analytics capability within the HEI context is rather limited. This study's main objective is to have a better understanding of the utilisation of big data analytics capability for data-driven decision-making to achieve better performance from Malaysian HEIs. This study validates an integrative model by combining information processing theory and resource-based view theory. Unlike extant literature, this study proposed methodology involving dual-stage analysis involving of Partial Least Squares Structural Equation Modelling and evolving Artificial Intelligence named deep learning (Artificial Neural Network) were performed. The application of deep ANN architecture can predict 83% of accuracy for the proposed model. Besides, the outcome of data-driven decision making from the relationship between big data analytic capability and data-driven decision making towards the performance of HEIs has significant findings. Results revealed that data-driven decision making could positively play an essential role in the relationship between big data analytic capability and performance of HEIs. Theoretically, the newly integrated theoretical model that incorporates information processing theory and resource-based view provides useful guidelines to HEI's about the crucial capabilities and resources that must be put into place to reap the benefits associated with big data implementations in the wake of Industry Revolution 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助干净的烧鹅采纳,获得10
1秒前
1秒前
2秒前
慕青应助斯文弘文采纳,获得10
3秒前
冯婷完成签到 ,获得积分10
4秒前
4秒前
Sherry99完成签到,获得积分10
4秒前
5秒前
5秒前
萤火虫发布了新的文献求助10
5秒前
南唧酱发布了新的文献求助50
6秒前
xun发布了新的文献求助10
6秒前
9秒前
9秒前
YeYe完成签到,获得积分20
12秒前
12秒前
陈为东发布了新的文献求助10
14秒前
啵啵完成签到,获得积分20
15秒前
布洛芬完成签到,获得积分10
16秒前
xiaohongmao发布了新的文献求助10
16秒前
17秒前
YeYe发布了新的文献求助10
20秒前
21秒前
今夕何夕完成签到 ,获得积分20
22秒前
萤火虫完成签到,获得积分10
24秒前
25秒前
wanci应助LSH970829采纳,获得10
25秒前
一个西瓜完成签到 ,获得积分10
27秒前
陈为东完成签到,获得积分20
28秒前
28秒前
张倩完成签到,获得积分10
28秒前
yiryir发布了新的文献求助10
29秒前
31秒前
故意的鼠标完成签到,获得积分10
32秒前
小于发布了新的文献求助10
33秒前
emma发布了新的文献求助10
34秒前
倦梦还完成签到,获得积分10
34秒前
Maestro_S应助明亮书兰采纳,获得20
34秒前
JamesPei应助T拐拐采纳,获得10
35秒前
xun发布了新的文献求助10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313635
求助须知:如何正确求助?哪些是违规求助? 2945947
关于积分的说明 8527726
捐赠科研通 2621578
什么是DOI,文献DOI怎么找? 1433864
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637