Big data analytics capability for improved performance of higher education institutions in the Era of IR 4.0: A multi-analytical SEM & ANN perspective.

大数据 计算机科学 背景(考古学) 数据科学 分析 知识管理 高等教育 结构方程建模 数据挖掘 机器学习 政治学 生物 古生物学 法学
作者
Mohamed Azlan Ashaari,Karpal Singh Dara Singh,Ghazanfar Ali Abbasi,Azlan Amran,Francisco Liébana‐Cabanillas
出处
期刊:Technological Forecasting and Social Change [Elsevier BV]
卷期号:173: 121119-121119 被引量:104
标识
DOI:10.1016/j.techfore.2021.121119
摘要

Despite the growing interest towards big data within higher education institutions (HEI), research on big data analytics capability within the HEI context is somewhat limited. This study's main objective is to have a better understanding of the utilisation of big data analytics capability for data-driven decision-making to achieve better performance from Malaysian HEIs. Despite the growing interest towards big data within higher education institutions (HEI), research on big data analytics capability within the HEI context is rather limited. This study's main objective is to have a better understanding of the utilisation of big data analytics capability for data-driven decision-making to achieve better performance from Malaysian HEIs. This study validates an integrative model by combining information processing theory and resource-based view theory. Unlike extant literature, this study proposed methodology involving dual-stage analysis involving of Partial Least Squares Structural Equation Modelling and evolving Artificial Intelligence named deep learning (Artificial Neural Network) were performed. The application of deep ANN architecture can predict 83% of accuracy for the proposed model. Besides, the outcome of data-driven decision making from the relationship between big data analytic capability and data-driven decision making towards the performance of HEIs has significant findings. Results revealed that data-driven decision making could positively play an essential role in the relationship between big data analytic capability and performance of HEIs. Theoretically, the newly integrated theoretical model that incorporates information processing theory and resource-based view provides useful guidelines to HEI's about the crucial capabilities and resources that must be put into place to reap the benefits associated with big data implementations in the wake of Industry Revolution 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肉脸小鱼完成签到 ,获得积分10
刚刚
刚刚
英姑应助愉快迎荷采纳,获得10
1秒前
暮光不ling完成签到,获得积分10
1秒前
阳光水壶发布了新的文献求助10
1秒前
mr完成签到 ,获得积分10
2秒前
2秒前
鲨鱼辣椒发布了新的文献求助10
2秒前
3秒前
科研通AI6应助十三采纳,获得10
4秒前
李健应助hah采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
阳光青烟发布了新的文献求助10
4秒前
4秒前
Wow完成签到,获得积分10
5秒前
默默完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
缓慢的凝安完成签到 ,获得积分10
6秒前
liu发布了新的文献求助10
7秒前
7秒前
鸣笛应助机灵的盼望采纳,获得10
7秒前
谢同学发布了新的文献求助10
7秒前
zhx发布了新的文献求助10
8秒前
NexusExplorer应助mia采纳,获得10
8秒前
8秒前
荣枫发布了新的文献求助10
8秒前
9秒前
超级的鞅发布了新的文献求助20
9秒前
小二郎应助小坨坨采纳,获得10
9秒前
10秒前
10秒前
着急的语海完成签到,获得积分10
10秒前
12秒前
sota完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
苏步清完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403