Big data analytics capability for improved performance of higher education institutions in the Era of IR 4.0: A multi-analytical SEM & ANN perspective.

大数据 计算机科学 背景(考古学) 数据科学 分析 知识管理 高等教育 结构方程建模 数据挖掘 机器学习 政治学 生物 古生物学 法学
作者
Mohamed Azlan Ashaari,Karpal Singh Dara Singh,Ghazanfar Ali Abbasi,Azlan Amran,Francisco Liébana‐Cabanillas
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:173: 121119-121119 被引量:139
标识
DOI:10.1016/j.techfore.2021.121119
摘要

Despite the growing interest towards big data within higher education institutions (HEI), research on big data analytics capability within the HEI context is somewhat limited. This study's main objective is to have a better understanding of the utilisation of big data analytics capability for data-driven decision-making to achieve better performance from Malaysian HEIs. Despite the growing interest towards big data within higher education institutions (HEI), research on big data analytics capability within the HEI context is rather limited. This study's main objective is to have a better understanding of the utilisation of big data analytics capability for data-driven decision-making to achieve better performance from Malaysian HEIs. This study validates an integrative model by combining information processing theory and resource-based view theory. Unlike extant literature, this study proposed methodology involving dual-stage analysis involving of Partial Least Squares Structural Equation Modelling and evolving Artificial Intelligence named deep learning (Artificial Neural Network) were performed. The application of deep ANN architecture can predict 83% of accuracy for the proposed model. Besides, the outcome of data-driven decision making from the relationship between big data analytic capability and data-driven decision making towards the performance of HEIs has significant findings. Results revealed that data-driven decision making could positively play an essential role in the relationship between big data analytic capability and performance of HEIs. Theoretically, the newly integrated theoretical model that incorporates information processing theory and resource-based view provides useful guidelines to HEI's about the crucial capabilities and resources that must be put into place to reap the benefits associated with big data implementations in the wake of Industry Revolution 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大马哈鱼完成签到,获得积分10
刚刚
刚刚
刚刚
零可林发布了新的文献求助10
刚刚
刚刚
科研通AI6应助小贾采纳,获得10
1秒前
xuejie发布了新的文献求助10
1秒前
天天快乐应助康琪采纳,获得10
1秒前
葛根完成签到,获得积分10
1秒前
1秒前
思源应助czb666采纳,获得10
1秒前
doki发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
科研通AI2S应助清脆初晴采纳,获得20
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
我是老大应助名金学南采纳,获得10
3秒前
3秒前
clear完成签到,获得积分10
3秒前
Jasper应助落后猫咪采纳,获得10
3秒前
nightgaunt发布了新的文献求助10
3秒前
3秒前
1733完成签到,获得积分10
3秒前
彭佳乐发布了新的文献求助10
4秒前
Aireen完成签到,获得积分10
4秒前
谢大喵应助进口小宵采纳,获得30
4秒前
4秒前
4秒前
CodeCraft应助lyn采纳,获得10
4秒前
牙瓜发布了新的文献求助20
4秒前
孤独的猕猴桃完成签到,获得积分10
5秒前
5秒前
5秒前
风清扬发布了新的文献求助10
5秒前
6秒前
get完成签到,获得积分10
6秒前
曾经友容完成签到 ,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545991
求助须知:如何正确求助?哪些是违规求助? 4631933
关于积分的说明 14623692
捐赠科研通 4573623
什么是DOI,文献DOI怎么找? 2507694
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455637