Big data analytics capability for improved performance of higher education institutions in the Era of IR 4.0: A multi-analytical SEM & ANN perspective.

大数据 计算机科学 背景(考古学) 数据科学 分析 知识管理 高等教育 结构方程建模 数据挖掘 机器学习 政治学 生物 古生物学 法学
作者
Mohamed Azlan Ashaari,Karpal Singh Dara Singh,Ghazanfar Ali Abbasi,Azlan Amran,Francisco Liébana‐Cabanillas
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:173: 121119-121119 被引量:139
标识
DOI:10.1016/j.techfore.2021.121119
摘要

Despite the growing interest towards big data within higher education institutions (HEI), research on big data analytics capability within the HEI context is somewhat limited. This study's main objective is to have a better understanding of the utilisation of big data analytics capability for data-driven decision-making to achieve better performance from Malaysian HEIs. Despite the growing interest towards big data within higher education institutions (HEI), research on big data analytics capability within the HEI context is rather limited. This study's main objective is to have a better understanding of the utilisation of big data analytics capability for data-driven decision-making to achieve better performance from Malaysian HEIs. This study validates an integrative model by combining information processing theory and resource-based view theory. Unlike extant literature, this study proposed methodology involving dual-stage analysis involving of Partial Least Squares Structural Equation Modelling and evolving Artificial Intelligence named deep learning (Artificial Neural Network) were performed. The application of deep ANN architecture can predict 83% of accuracy for the proposed model. Besides, the outcome of data-driven decision making from the relationship between big data analytic capability and data-driven decision making towards the performance of HEIs has significant findings. Results revealed that data-driven decision making could positively play an essential role in the relationship between big data analytic capability and performance of HEIs. Theoretically, the newly integrated theoretical model that incorporates information processing theory and resource-based view provides useful guidelines to HEI's about the crucial capabilities and resources that must be put into place to reap the benefits associated with big data implementations in the wake of Industry Revolution 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助笑看人生采纳,获得10
1秒前
浮生如梦完成签到,获得积分10
2秒前
木木完成签到,获得积分10
2秒前
2秒前
3秒前
可了不得完成签到 ,获得积分10
4秒前
zz发布了新的文献求助10
4秒前
ZiyuanLi完成签到 ,获得积分10
5秒前
LL发布了新的文献求助10
5秒前
慕青应助liu采纳,获得10
6秒前
碧蓝夜白发布了新的文献求助10
6秒前
英姑应助和谐悲采纳,获得10
8秒前
长情的芝麻完成签到 ,获得积分10
9秒前
lkt完成签到,获得积分10
9秒前
天天快乐应助追寻宛海采纳,获得15
10秒前
研友_ZGmVjL完成签到,获得积分10
11秒前
orixero应助chens627采纳,获得30
12秒前
orixero应助vespa采纳,获得10
13秒前
何洋完成签到 ,获得积分10
13秒前
14秒前
科研通AI6应助shirley采纳,获得10
16秒前
Criminology34应助秋千采纳,获得20
18秒前
小谭完成签到 ,获得积分10
19秒前
知行合一发布了新的文献求助10
19秒前
酷波er应助爱喝可乐采纳,获得10
19秒前
垚106完成签到 ,获得积分10
20秒前
auc完成签到,获得积分10
20秒前
共享精神应助yucj采纳,获得10
21秒前
22秒前
23秒前
云竹丶完成签到,获得积分10
23秒前
魔幻沛菡完成签到 ,获得积分10
25秒前
烨伟发布了新的文献求助10
26秒前
26秒前
今后应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
26秒前
李爱国应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
是木易呀应助科研通管家采纳,获得10
27秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379465
求助须知:如何正确求助?哪些是违规求助? 4503814
关于积分的说明 14016664
捐赠科研通 4412588
什么是DOI,文献DOI怎么找? 2423880
邀请新用户注册赠送积分活动 1416751
关于科研通互助平台的介绍 1394290