Big data analytics capability for improved performance of higher education institutions in the Era of IR 4.0: A multi-analytical SEM & ANN perspective.

大数据 计算机科学 背景(考古学) 数据科学 分析 知识管理 高等教育 结构方程建模 数据挖掘 机器学习 政治学 生物 古生物学 法学
作者
Mohamed Azlan Ashaari,Karpal Singh Dara Singh,Ghazanfar Ali Abbasi,Azlan Amran,Francisco Liébana‐Cabanillas
出处
期刊:Technological Forecasting and Social Change [Elsevier BV]
卷期号:173: 121119-121119 被引量:104
标识
DOI:10.1016/j.techfore.2021.121119
摘要

Despite the growing interest towards big data within higher education institutions (HEI), research on big data analytics capability within the HEI context is somewhat limited. This study's main objective is to have a better understanding of the utilisation of big data analytics capability for data-driven decision-making to achieve better performance from Malaysian HEIs. Despite the growing interest towards big data within higher education institutions (HEI), research on big data analytics capability within the HEI context is rather limited. This study's main objective is to have a better understanding of the utilisation of big data analytics capability for data-driven decision-making to achieve better performance from Malaysian HEIs. This study validates an integrative model by combining information processing theory and resource-based view theory. Unlike extant literature, this study proposed methodology involving dual-stage analysis involving of Partial Least Squares Structural Equation Modelling and evolving Artificial Intelligence named deep learning (Artificial Neural Network) were performed. The application of deep ANN architecture can predict 83% of accuracy for the proposed model. Besides, the outcome of data-driven decision making from the relationship between big data analytic capability and data-driven decision making towards the performance of HEIs has significant findings. Results revealed that data-driven decision making could positively play an essential role in the relationship between big data analytic capability and performance of HEIs. Theoretically, the newly integrated theoretical model that incorporates information processing theory and resource-based view provides useful guidelines to HEI's about the crucial capabilities and resources that must be put into place to reap the benefits associated with big data implementations in the wake of Industry Revolution 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助琪琪采纳,获得10
1秒前
雪山飞龙发布了新的文献求助10
2秒前
外向一一完成签到,获得积分10
2秒前
2秒前
追寻茗发布了新的文献求助10
3秒前
wang发布了新的文献求助10
4秒前
yu完成签到,获得积分10
5秒前
5秒前
坚强小鸭子完成签到,获得积分10
6秒前
7秒前
8秒前
拓跋寡妇完成签到,获得积分10
10秒前
流口水完成签到,获得积分10
11秒前
18岁中二少年完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
雪山飞龙发布了新的文献求助10
13秒前
14秒前
16秒前
17秒前
yy发布了新的文献求助10
18秒前
18秒前
陈陈发布了新的文献求助30
19秒前
林子发布了新的文献求助30
20秒前
无语的一刀完成签到 ,获得积分20
20秒前
曾经念真应助mmm采纳,获得10
20秒前
研友_VZG7GZ应助开心尔芙采纳,获得30
20秒前
景清发布了新的文献求助10
20秒前
琪琪发布了新的文献求助10
22秒前
雪山飞龙发布了新的文献求助10
22秒前
clonidine完成签到,获得积分10
23秒前
送不送书7完成签到 ,获得积分10
23秒前
脑洞疼应助always采纳,获得10
24秒前
24秒前
25秒前
26秒前
开心尔芙完成签到,获得积分20
26秒前
Chemking发布了新的文献求助20
27秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992659
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262911
捐赠科研通 3273209
什么是DOI,文献DOI怎么找? 1805969
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545