Machine Assist for Pediatric Posterior Fossa Tumor Diagnosis: A Multinational Study

医学 人工智能 磁共振成像 分类器(UML) 机器学习 逻辑回归 髓母细胞瘤 毛细胞星形细胞瘤 模式识别(心理学) 放射科 计算机科学 星形细胞瘤 病理 胶质瘤 内科学 癌症研究
作者
Michael Zhang,Samuel W Wong,Jason N. Wright,Sebastian Toescu,Maryam Mohammadzadeh,Michelle Han,Seth Lummus,Matthias Wagner,Derek Yecies,Hollie Lai,Azam Eghbal,Alireza Radmanesh,Jordan Nemelka,Stephen C. Harward,Michael D. Malinzak,Suzanne Laughlin,Sébastien Perreault,Kristina R. M. Braun,Arastoo Vossough,Tina Young Poussaint,Robert Goetti,Birgit Ertl‐Wagner,Chang Yueh Ho,Özgür Öztekin,Vijay Ramaswamy,Kshitij Mankad,Nicholas A. Vitanza,Samuel Cheshier,Mourad Ben Saïd,Kristian Aquilina,Eric M. Thompson,Alok Jaju,Gerald A. Grant,Robert M. Lober,Kristen W. Yeom
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
卷期号:89 (5): 892-900 被引量:12
标识
DOI:10.1093/neuros/nyab311
摘要

Clinicians and machine classifiers reliably diagnose pilocytic astrocytoma (PA) on magnetic resonance imaging (MRI) but less accurately distinguish medulloblastoma (MB) from ependymoma (EP). One strategy is to first rule out the most identifiable diagnosis.To hypothesize a sequential machine-learning classifier could improve diagnostic performance by mimicking a clinician's strategy of excluding PA before distinguishing MB from EP.We extracted 1800 total Image Biomarker Standardization Initiative (IBSI)-based features from T2- and gadolinium-enhanced T1-weighted images in a multinational cohort of 274 MB, 156 PA, and 97 EP. We designed a 2-step sequential classifier - first ruling out PA, and next distinguishing MB from EP. For each step, we selected the best performing model from 6-candidate classifier using a reduced feature set, and measured performance on a holdout test set with the microaveraged F1 score.Optimal diagnostic performance was achieved using 2 decision steps, each with its own distinct imaging features and classifier method. A 3-way logistic regression classifier first distinguished PA from non-PA, with T2 uniformity and T1 contrast as the most relevant IBSI features (F1 score 0.8809). A 2-way neural net classifier next distinguished MB from EP, with T2 sphericity and T1 flatness as most relevant (F1 score 0.9189). The combined, sequential classifier was with F1 score 0.9179.An MRI-based sequential machine-learning classifiers offer high-performance prediction of pediatric posterior fossa tumors across a large, multinational cohort. Optimization of this model with demographic, clinical, imaging, and molecular predictors could provide significant advantages for family counseling and surgical planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助weske采纳,获得10
1秒前
bofu发布了新的文献求助10
1秒前
2秒前
丰那个丰发布了新的文献求助10
2秒前
2秒前
桃紫完成签到,获得积分10
3秒前
5秒前
勤劳小海豚完成签到,获得积分10
6秒前
zxh发布了新的文献求助10
7秒前
bofu发布了新的文献求助10
7秒前
JaneChen发布了新的文献求助10
8秒前
10秒前
10秒前
zzm发布了新的文献求助10
11秒前
lalala发布了新的文献求助10
14秒前
科研通AI2S应助方知采纳,获得10
16秒前
17秒前
19秒前
研友_Zr2mxZ完成签到,获得积分10
19秒前
科目三应助Suu采纳,获得10
19秒前
20秒前
852应助zzm采纳,获得10
20秒前
可爱的函函应助郑小七采纳,获得10
20秒前
慕青应助丰那个丰采纳,获得10
21秒前
宋娣关注了科研通微信公众号
21秒前
bofu发布了新的文献求助10
22秒前
KK关闭了KK文献求助
22秒前
坦率的高烽完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
25秒前
bofu发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
蝌蚪发布了新的文献求助10
30秒前
好想睡大觉完成签到,获得积分10
30秒前
懵懂的子骞完成签到 ,获得积分10
31秒前
33秒前
34秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163