亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Assist for Pediatric Posterior Fossa Tumor Diagnosis: A Multinational Study

医学 人工智能 磁共振成像 分类器(UML) 机器学习 逻辑回归 髓母细胞瘤 毛细胞星形细胞瘤 模式识别(心理学) 放射科 计算机科学 星形细胞瘤 病理 胶质瘤 内科学 癌症研究
作者
Michael Zhang,Samuel W Wong,Jason N. Wright,Sebastian Toescu,Maryam Mohammadzadeh,Michelle Han,Seth Lummus,Matthias Wagner,Derek Yecies,Hollie Lai,Azam Eghbal,Alireza Radmanesh,Jordan Nemelka,Stephen C. Harward,Michael D. Malinzak,Suzanne Laughlin,Sébastien Perreault,Kristina R. M. Braun,Arastoo Vossough,Tina Young Poussaint,Robert Goetti,Birgit Ertl‐Wagner,Chang Yueh Ho,Özgür Öztekin,Vijay Ramaswamy,Kshitij Mankad,Nicholas A. Vitanza,Samuel Cheshier,Mourad Ben Saïd,Kristian Aquilina,Eric M. Thompson,Alok Jaju,Gerald A. Grant,Robert M. Lober,Kristen W. Yeom
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
卷期号:89 (5): 892-900 被引量:12
标识
DOI:10.1093/neuros/nyab311
摘要

Clinicians and machine classifiers reliably diagnose pilocytic astrocytoma (PA) on magnetic resonance imaging (MRI) but less accurately distinguish medulloblastoma (MB) from ependymoma (EP). One strategy is to first rule out the most identifiable diagnosis.To hypothesize a sequential machine-learning classifier could improve diagnostic performance by mimicking a clinician's strategy of excluding PA before distinguishing MB from EP.We extracted 1800 total Image Biomarker Standardization Initiative (IBSI)-based features from T2- and gadolinium-enhanced T1-weighted images in a multinational cohort of 274 MB, 156 PA, and 97 EP. We designed a 2-step sequential classifier - first ruling out PA, and next distinguishing MB from EP. For each step, we selected the best performing model from 6-candidate classifier using a reduced feature set, and measured performance on a holdout test set with the microaveraged F1 score.Optimal diagnostic performance was achieved using 2 decision steps, each with its own distinct imaging features and classifier method. A 3-way logistic regression classifier first distinguished PA from non-PA, with T2 uniformity and T1 contrast as the most relevant IBSI features (F1 score 0.8809). A 2-way neural net classifier next distinguished MB from EP, with T2 sphericity and T1 flatness as most relevant (F1 score 0.9189). The combined, sequential classifier was with F1 score 0.9179.An MRI-based sequential machine-learning classifiers offer high-performance prediction of pediatric posterior fossa tumors across a large, multinational cohort. Optimization of this model with demographic, clinical, imaging, and molecular predictors could provide significant advantages for family counseling and surgical planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
闪闪问玉发布了新的文献求助10
6秒前
单从蓉发布了新的文献求助10
9秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
13秒前
13秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
Jasper应助www采纳,获得10
14秒前
专炸油条完成签到 ,获得积分10
23秒前
24秒前
3565完成签到,获得积分10
30秒前
www发布了新的文献求助10
30秒前
32秒前
赘婿应助3565采纳,获得10
33秒前
闪闪问玉完成签到,获得积分10
34秒前
42秒前
贰鸟应助陈琴采纳,获得20
42秒前
www完成签到,获得积分10
43秒前
科目三应助幸福龙猫采纳,获得10
43秒前
janice发布了新的文献求助10
47秒前
janice完成签到,获得积分10
53秒前
55秒前
迷人秋烟应助andrele采纳,获得100
57秒前
天天天才完成签到,获得积分10
57秒前
wsb76完成签到 ,获得积分10
58秒前
幸福龙猫发布了新的文献求助10
59秒前
wenxian完成签到,获得积分20
59秒前
1分钟前
爆米花应助搞怪网络采纳,获得10
1分钟前
所所应助wenxian采纳,获得50
1分钟前
酷波er应助沉默友菱采纳,获得10
1分钟前
单从蓉发布了新的文献求助10
1分钟前
1分钟前
英姑应助kawing采纳,获得20
1分钟前
1分钟前
Kevin完成签到,获得积分10
1分钟前
1分钟前
小马甲应助幸福龙猫采纳,获得10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729080
求助须知:如何正确求助?哪些是违规求助? 3274187
关于积分的说明 9984706
捐赠科研通 2989472
什么是DOI,文献DOI怎么找? 1640468
邀请新用户注册赠送积分活动 779224
科研通“疑难数据库(出版商)”最低求助积分说明 748088