已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning-Based Predictive Beamforming for Integrated Sensing and Communication in Vehicular Networks

计算机科学 波束赋形 架空(工程) 利用 频道(广播) 过程(计算) 计算机工程 分布式计算 计算机网络 电信 计算机安全 操作系统
作者
Chang Liu,Weijie Yuan,Shuangyang Li,Xuemeng Liu,Husheng Li,Derrick Wing Kwan Ng,Yonghui Li
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:40 (8): 2317-2334 被引量:66
标识
DOI:10.1109/jsac.2022.3180803
摘要

This paper investigates the integrated sensing and communication (ISAC) in vehicle-to-infrastructure (V2I) networks. To realize ISAC, an effective beamforming design is essential which however, highly depends on the availability of accurate channel tracking requiring large training overhead and computational complexity. Motivated by this, we adopt a deep learning (DL) approach to implicitly learn the features of historical channels and directly predict the beamforming matrix to be adopted for the next time slot to maximize the average achievable sum-rate of an ISAC system. The proposed method can bypass the need of explicit channel tracking process and reduce the signaling overhead significantly. To this end, a general sum-rate maximization problem with Cramer-Rao lower bounds-based sensing constraints is first formulated for the considered ISAC system taking into account the multiple access interference. Then, by exploiting the penalty method, a versatile unsupervised DL-based predictive beamforming design framework is developed to address the formulated design problem. As a realization of the developed framework, a historical channels-based convolutional long short-term memory (LSTM) network (HCL-Net) is devised for predictive beamforming in the ISAC-based V2I network. Specifically, the convolution and LSTM modules are successively adopted in the proposed HCL-Net to exploit the spatial and temporal dependencies of communication channels to further improve the learning performance. Finally, simulation results show that the proposed predictive method not only guarantees the required sensing performance, but also achieves a satisfactory sum-rate that can approach the upper bound obtained by the genie-aided scheme with the perfect instantaneous channel state information available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wixx007发布了新的文献求助50
1秒前
2秒前
4秒前
SCI完成签到 ,获得积分10
5秒前
6秒前
芳华如梦完成签到,获得积分10
6秒前
羽魄完成签到 ,获得积分10
6秒前
8秒前
归苡发布了新的文献求助10
8秒前
哇呀呀完成签到 ,获得积分10
9秒前
楚楚完成签到 ,获得积分10
11秒前
13秒前
13秒前
gcyyyds完成签到 ,获得积分10
13秒前
兜里没糖了完成签到 ,获得积分0
14秒前
TAOS完成签到 ,获得积分10
15秒前
17秒前
抠鼻公主完成签到 ,获得积分10
17秒前
18秒前
Shuhe_Gong完成签到 ,获得积分10
19秒前
发发发布了新的文献求助10
19秒前
ryanfeng完成签到,获得积分0
20秒前
21秒前
文静的可仁完成签到,获得积分10
21秒前
Haimian完成签到 ,获得积分10
21秒前
nk完成签到 ,获得积分10
24秒前
123456789完成签到,获得积分10
24秒前
dd发布了新的文献求助10
24秒前
dracovu完成签到,获得积分10
25秒前
Yy完成签到 ,获得积分10
26秒前
26秒前
克劳修斯完成签到 ,获得积分10
26秒前
Auralis完成签到 ,获得积分10
27秒前
13686682012发布了新的文献求助10
27秒前
土豪的新儿完成签到 ,获得积分10
27秒前
dax大雄完成签到 ,获得积分10
30秒前
30秒前
31秒前
31秒前
量子星尘发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610218
求助须知:如何正确求助?哪些是违规求助? 4016237
关于积分的说明 12434819
捐赠科研通 3697797
什么是DOI,文献DOI怎么找? 2038994
邀请新用户注册赠送积分活动 1071906
科研通“疑难数据库(出版商)”最低求助积分说明 955582