Learning-Based Predictive Beamforming for Integrated Sensing and Communication in Vehicular Networks

计算机科学 波束赋形 架空(工程) 利用 频道(广播) 过程(计算) 计算机工程 分布式计算 计算机网络 电信 计算机安全 操作系统
作者
Chang Liu,Weijie Yuan,Shuangyang Li,Xuemeng Liu,Husheng Li,Derrick Wing Kwan Ng,Yonghui Li
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:40 (8): 2317-2334 被引量:66
标识
DOI:10.1109/jsac.2022.3180803
摘要

This paper investigates the integrated sensing and communication (ISAC) in vehicle-to-infrastructure (V2I) networks. To realize ISAC, an effective beamforming design is essential which however, highly depends on the availability of accurate channel tracking requiring large training overhead and computational complexity. Motivated by this, we adopt a deep learning (DL) approach to implicitly learn the features of historical channels and directly predict the beamforming matrix to be adopted for the next time slot to maximize the average achievable sum-rate of an ISAC system. The proposed method can bypass the need of explicit channel tracking process and reduce the signaling overhead significantly. To this end, a general sum-rate maximization problem with Cramer-Rao lower bounds-based sensing constraints is first formulated for the considered ISAC system taking into account the multiple access interference. Then, by exploiting the penalty method, a versatile unsupervised DL-based predictive beamforming design framework is developed to address the formulated design problem. As a realization of the developed framework, a historical channels-based convolutional long short-term memory (LSTM) network (HCL-Net) is devised for predictive beamforming in the ISAC-based V2I network. Specifically, the convolution and LSTM modules are successively adopted in the proposed HCL-Net to exploit the spatial and temporal dependencies of communication channels to further improve the learning performance. Finally, simulation results show that the proposed predictive method not only guarantees the required sensing performance, but also achieves a satisfactory sum-rate that can approach the upper bound obtained by the genie-aided scheme with the perfect instantaneous channel state information available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寂寞致幻完成签到,获得积分20
刚刚
量子星尘发布了新的文献求助10
1秒前
高高完成签到 ,获得积分10
2秒前
JoshuaChen发布了新的文献求助10
2秒前
ww完成签到,获得积分10
2秒前
CodeCraft应助宋晓静采纳,获得10
2秒前
就瞅你发布了新的文献求助10
3秒前
orixero应助uilyang采纳,获得30
3秒前
xidongdong关注了科研通微信公众号
3秒前
kang完成签到,获得积分10
3秒前
李健应助毛子涵采纳,获得10
3秒前
天天快乐应助笑点低的不采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
yian007完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
JasonSun完成签到,获得积分10
8秒前
8秒前
SciGPT应助缓慢易云采纳,获得10
9秒前
xuxu发布了新的文献求助20
9秒前
9秒前
9秒前
侯美琪完成签到 ,获得积分10
9秒前
10秒前
10秒前
苹果发布了新的文献求助10
10秒前
12334发布了新的文献求助10
10秒前
ww发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
大个应助渊_采纳,获得10
11秒前
11秒前
RockRedfoo完成签到 ,获得积分10
11秒前
scvsdz发布了新的文献求助10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582