Learning-Based Predictive Beamforming for Integrated Sensing and Communication in Vehicular Networks

计算机科学 波束赋形 架空(工程) 利用 频道(广播) 过程(计算) 计算机工程 分布式计算 计算机网络 电信 计算机安全 操作系统
作者
Chang Liu,Weijie Yuan,Shuangyang Li,Xuemeng Liu,Husheng Li,Derrick Wing Kwan Ng,Yonghui Li
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:40 (8): 2317-2334 被引量:66
标识
DOI:10.1109/jsac.2022.3180803
摘要

This paper investigates the integrated sensing and communication (ISAC) in vehicle-to-infrastructure (V2I) networks. To realize ISAC, an effective beamforming design is essential which however, highly depends on the availability of accurate channel tracking requiring large training overhead and computational complexity. Motivated by this, we adopt a deep learning (DL) approach to implicitly learn the features of historical channels and directly predict the beamforming matrix to be adopted for the next time slot to maximize the average achievable sum-rate of an ISAC system. The proposed method can bypass the need of explicit channel tracking process and reduce the signaling overhead significantly. To this end, a general sum-rate maximization problem with Cramer-Rao lower bounds-based sensing constraints is first formulated for the considered ISAC system taking into account the multiple access interference. Then, by exploiting the penalty method, a versatile unsupervised DL-based predictive beamforming design framework is developed to address the formulated design problem. As a realization of the developed framework, a historical channels-based convolutional long short-term memory (LSTM) network (HCL-Net) is devised for predictive beamforming in the ISAC-based V2I network. Specifically, the convolution and LSTM modules are successively adopted in the proposed HCL-Net to exploit the spatial and temporal dependencies of communication channels to further improve the learning performance. Finally, simulation results show that the proposed predictive method not only guarantees the required sensing performance, but also achieves a satisfactory sum-rate that can approach the upper bound obtained by the genie-aided scheme with the perfect instantaneous channel state information available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ting应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
刚刚
华仔应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
刚刚
冬天333应助科研通管家采纳,获得10
刚刚
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
zhonglv7应助科研通管家采纳,获得10
1秒前
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
小二郎应助Lwj采纳,获得10
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
可乐发布了新的文献求助10
1秒前
nextconnie完成签到,获得积分10
1秒前
1秒前
情怀应助幸运的元元采纳,获得10
1秒前
小鱼马发布了新的文献求助10
2秒前
光亮溪灵完成签到,获得积分10
2秒前
jhfvkbjk发布了新的文献求助10
2秒前
落寞的尔芙完成签到,获得积分10
2秒前
sulvzhiwang完成签到,获得积分10
2秒前
2秒前
11231发布了新的文献求助20
2秒前
香瓜发布了新的文献求助10
2秒前
快乐觅露发布了新的文献求助10
3秒前
田様应助lyy采纳,获得10
3秒前
3秒前
超级巨佬发布了新的文献求助10
4秒前
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851