亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning-Based Predictive Beamforming for Integrated Sensing and Communication in Vehicular Networks

计算机科学 波束赋形 架空(工程) 利用 频道(广播) 过程(计算) 计算机工程 分布式计算 计算机网络 电信 计算机安全 操作系统
作者
Chang Liu,Weijie Yuan,Shuangyang Li,Xuemeng Liu,Husheng Li,Derrick Wing Kwan Ng,Yonghui Li
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:40 (8): 2317-2334 被引量:66
标识
DOI:10.1109/jsac.2022.3180803
摘要

This paper investigates the integrated sensing and communication (ISAC) in vehicle-to-infrastructure (V2I) networks. To realize ISAC, an effective beamforming design is essential which however, highly depends on the availability of accurate channel tracking requiring large training overhead and computational complexity. Motivated by this, we adopt a deep learning (DL) approach to implicitly learn the features of historical channels and directly predict the beamforming matrix to be adopted for the next time slot to maximize the average achievable sum-rate of an ISAC system. The proposed method can bypass the need of explicit channel tracking process and reduce the signaling overhead significantly. To this end, a general sum-rate maximization problem with Cramer-Rao lower bounds-based sensing constraints is first formulated for the considered ISAC system taking into account the multiple access interference. Then, by exploiting the penalty method, a versatile unsupervised DL-based predictive beamforming design framework is developed to address the formulated design problem. As a realization of the developed framework, a historical channels-based convolutional long short-term memory (LSTM) network (HCL-Net) is devised for predictive beamforming in the ISAC-based V2I network. Specifically, the convolution and LSTM modules are successively adopted in the proposed HCL-Net to exploit the spatial and temporal dependencies of communication channels to further improve the learning performance. Finally, simulation results show that the proposed predictive method not only guarantees the required sensing performance, but also achieves a satisfactory sum-rate that can approach the upper bound obtained by the genie-aided scheme with the perfect instantaneous channel state information available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
11秒前
我是大兴发布了新的文献求助10
14秒前
淡淡菀发布了新的文献求助10
15秒前
淡淡菀完成签到,获得积分10
22秒前
自觉访云发布了新的文献求助20
29秒前
NexusExplorer应助采薇采纳,获得10
29秒前
白华苍松完成签到,获得积分10
32秒前
35秒前
47秒前
53秒前
bkagyin应助小鲤鱼在睡觉采纳,获得10
57秒前
科研通AI2S应助Wei采纳,获得10
1分钟前
小鲤鱼在睡觉完成签到,获得积分10
1分钟前
YOLO完成签到 ,获得积分10
1分钟前
nav完成签到 ,获得积分10
1分钟前
1分钟前
采薇发布了新的文献求助10
1分钟前
健壮的花瓣完成签到 ,获得积分10
1分钟前
moroa完成签到,获得积分10
2分钟前
Lucas应助mh采纳,获得10
3分钟前
3分钟前
YY发布了新的文献求助10
3分钟前
安德鲁完成签到 ,获得积分10
3分钟前
3分钟前
mh发布了新的文献求助10
3分钟前
小赵发布了新的文献求助10
4分钟前
小赵完成签到,获得积分10
4分钟前
4分钟前
YY发布了新的文献求助10
4分钟前
章鱼完成签到,获得积分10
4分钟前
mh完成签到,获得积分10
5分钟前
汉堡包应助Sience采纳,获得10
5分钟前
CipherSage应助慈祥的梦露采纳,获得10
5分钟前
5分钟前
5分钟前
Sience发布了新的文献求助10
5分钟前
5分钟前
5分钟前
慈祥的梦露完成签到,获得积分10
6分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244727
求助须知:如何正确求助?哪些是违规求助? 2888396
关于积分的说明 8252824
捐赠科研通 2556854
什么是DOI,文献DOI怎么找? 1385423
科研通“疑难数据库(出版商)”最低求助积分说明 650157
邀请新用户注册赠送积分活动 626269