Reinforcement learning for batch process control: Review and perspectives

强化学习 过程(计算) 控制(管理) 计算机科学 模型预测控制 最优控制 过程控制 批处理 控制工程 工业工程 人工智能 工程类 数学优化 数学 操作系统 程序设计语言
作者
Haeun Yoo,Ha-Eun Byun,Dongho Han,Jay H. Lee
出处
期刊:Annual Reviews in Control [Elsevier]
卷期号:52: 108-119 被引量:39
标识
DOI:10.1016/j.arcontrol.2021.10.006
摘要

Batch or semi-batch processing is becoming more prevalent in industrial chemical manufacturing but it has not benefited from advanced control technologies to a same degree as continuous processing. This is due to its several unique aspects which pose challenges to implementing model-based optimal control, such as its highly nonstationary operation and significant run-to-run variabilities. While existing advanced control methods like model predictive control (MPC) have been extended to address some of the challenges, they still suffer from certain limitations which have prevented their widespread industrial adoption. Reinforcement learning (RL) where the agent learns the optimal policy by interacting with the system offers an alternative to the existing model-based methods and has potential for bringing significant improvements to industrial batch process control practice. With such motivation, this paper examines the advantages that RL offers over the traditional model-based optimal control methods and how it can be tailored to better address the characteristics of industrial batch process control problems. After a brief review of the existing batch control methods, the basic concepts and algorithms of RL are introduced and issues for applying them to batch process control problems are discussed. The nascent literature on the use of RL in batch process control is briefly reviewed, both in recipe optimization and tracking control, and our perspectives on future research directions are shared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小叶完成签到 ,获得积分10
1秒前
liukejia完成签到,获得积分10
2秒前
FangyingTang发布了新的文献求助20
2秒前
3秒前
XL完成签到,获得积分10
3秒前
echo发布了新的文献求助10
4秒前
大模型应助ruyi采纳,获得10
4秒前
ww发布了新的文献求助10
5秒前
6秒前
7秒前
mmlikeu完成签到,获得积分10
9秒前
9秒前
10秒前
mygod发布了新的文献求助20
11秒前
乐乐应助清爽山雁采纳,获得10
12秒前
12秒前
麻衣发布了新的文献求助10
13秒前
guye完成签到,获得积分10
14秒前
slz发布了新的文献求助10
14秒前
源味怪豆完成签到,获得积分20
18秒前
19秒前
七七发布了新的文献求助10
20秒前
思源应助slz采纳,获得10
20秒前
orixero应助slz采纳,获得10
20秒前
学术裁缝完成签到,获得积分10
22秒前
23秒前
23秒前
8R60d8应助mmlikeu采纳,获得10
24秒前
斯文败类应助mmlikeu采纳,获得10
24秒前
躺平研究生完成签到,获得积分10
24秒前
cwm完成签到,获得积分10
24秒前
兔糕同学发布了新的文献求助10
26秒前
itousong发布了新的文献求助10
26秒前
27秒前
SciGPT应助liukejia采纳,获得10
28秒前
枫1538发布了新的文献求助10
28秒前
28秒前
29秒前
victorchen完成签到,获得积分10
29秒前
Lufthansa发布了新的文献求助10
29秒前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165832
求助须知:如何正确求助?哪些是违规求助? 2817091
关于积分的说明 7914877
捐赠科研通 2476611
什么是DOI,文献DOI怎么找? 1319056
科研通“疑难数据库(出版商)”最低求助积分说明 632332
版权声明 602415