Reinforcement learning for batch process control: Review and perspectives

强化学习 过程(计算) 控制(管理) 计算机科学 模型预测控制 最优控制 过程控制 批处理 控制工程 工业工程 人工智能 工程类 数学优化 数学 操作系统 程序设计语言
作者
Haeun Yoo,Ha-Eun Byun,Dongho Han,Jay H. Lee
出处
期刊:Annual Reviews in Control [Elsevier BV]
卷期号:52: 108-119 被引量:39
标识
DOI:10.1016/j.arcontrol.2021.10.006
摘要

Batch or semi-batch processing is becoming more prevalent in industrial chemical manufacturing but it has not benefited from advanced control technologies to a same degree as continuous processing. This is due to its several unique aspects which pose challenges to implementing model-based optimal control, such as its highly nonstationary operation and significant run-to-run variabilities. While existing advanced control methods like model predictive control (MPC) have been extended to address some of the challenges, they still suffer from certain limitations which have prevented their widespread industrial adoption. Reinforcement learning (RL) where the agent learns the optimal policy by interacting with the system offers an alternative to the existing model-based methods and has potential for bringing significant improvements to industrial batch process control practice. With such motivation, this paper examines the advantages that RL offers over the traditional model-based optimal control methods and how it can be tailored to better address the characteristics of industrial batch process control problems. After a brief review of the existing batch control methods, the basic concepts and algorithms of RL are introduced and issues for applying them to batch process control problems are discussed. The nascent literature on the use of RL in batch process control is briefly reviewed, both in recipe optimization and tracking control, and our perspectives on future research directions are shared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助不爱吃饭采纳,获得100
1秒前
iiiau完成签到,获得积分10
1秒前
1秒前
小张完成签到 ,获得积分10
2秒前
希望天下0贩的0应助虎_采纳,获得10
2秒前
2秒前
娜娜完成签到 ,获得积分10
2秒前
饼饼发布了新的文献求助10
2秒前
zxs发布了新的文献求助10
2秒前
聪明勇敢有力量完成签到,获得积分10
3秒前
4秒前
小透明发布了新的文献求助10
4秒前
KOU完成签到,获得积分10
5秒前
英俊冰蝶完成签到,获得积分10
5秒前
qjx发布了新的文献求助10
5秒前
依古比古完成签到 ,获得积分10
5秒前
xiaozeng发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
Annnnnn完成签到,获得积分10
8秒前
zxs完成签到,获得积分10
8秒前
麻小医发布了新的文献求助10
8秒前
CipherSage应助lee采纳,获得10
8秒前
Survivor完成签到,获得积分10
8秒前
9秒前
9秒前
XDM发布了新的文献求助10
10秒前
鲤鱼完成签到,获得积分10
10秒前
科研废柴完成签到,获得积分10
10秒前
可研完成签到,获得积分10
10秒前
10秒前
10秒前
12关注了科研通微信公众号
10秒前
Liu发布了新的文献求助10
10秒前
11秒前
11秒前
司空博涛完成签到,获得积分20
11秒前
qiong发布了新的文献求助10
12秒前
在水一方应助锅锅采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951389
求助须知:如何正确求助?哪些是违规求助? 3496717
关于积分的说明 11084234
捐赠科研通 3227173
什么是DOI,文献DOI怎么找? 1784313
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801110