Structural health monitoring of exterior beam–column subassemblies through detailed numerical modelling and using various machine learning techniques

人工神经网络 结构健康监测 接头(建筑物) 粒子群优化 结构工程 失效模式及影响分析 梁(结构) 有限元法 机器学习 计算机科学 栏(排版) 人工智能 工程类 连接(主束)
作者
Giuseppe Santarsiero,Mayank Mishra,Manav Kumar Singh,Angelo Masi
出处
期刊:Machine learning with applications [Elsevier]
卷期号:6: 100190-100190 被引量:5
标识
DOI:10.1016/j.mlwa.2021.100190
摘要

Structural health monitoring of beam–column joints is paramount, as they are critical load-carrying components of reinforced concrete buildings. Evaluating the ultimate joint shear capacity and failure modes of beam–columns, especially in seismic events, is a crucial task, especially in view of life safety concerns. Traditional methods used to determine the joint shear capacity of beam–column joints are often inaccurate and cumbersome owing to improper accounting of governing parameters that influence beam–column joints’ behaviour. In this study, the performance of machine learning-based structural health monitoring techniques are evaluated in predicting the joint shear capacity and the mode of failure for the exterior beam–column joint taking into account their complex structural behaviour through both numerical modelling and various machine learning techniques. The data used to train and test the model was collected from laboratory experiments and other test data available in the literature. The results indicated the superiority of the proposed particle swarm optimized artificial neural network (PSO-ANN) and XGboost over previously used approaches. Hence, the proposed techniques can be efficiently used for monitoring of structural performance by making informed decision regarding condition assessment of RC buildings. • The paper presents application of machine learning techniques for structural health monitoring of beam–column joints. • This paper demonstrates the finite element modelling to predict the joints behaviour. • Several machine learning techniques are compared for predicting joint-shear capacity and failure mode for joints. • Machine learning models perform better in computational effort than numerical models for joint shear prediction. • The machine learning models facilitate quick condition assessment and preventive retrofitting solutions for the beam–column joints.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渭南第一大帅逼完成签到,获得积分10
1秒前
艺玲发布了新的文献求助10
1秒前
邱洪晓完成签到,获得积分10
1秒前
2秒前
独特元蝶完成签到,获得积分20
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
科研小白完成签到 ,获得积分10
4秒前
酷炫蛋挞完成签到 ,获得积分10
5秒前
5秒前
www发布了新的文献求助80
5秒前
量子星尘发布了新的文献求助10
6秒前
善学以致用应助崔略商采纳,获得10
6秒前
沙漠完成签到,获得积分10
6秒前
乐乐应助yeandpeng采纳,获得10
7秒前
HUOZHUANGCHAO完成签到,获得积分10
7秒前
笮笮发布了新的文献求助10
7秒前
天天向上发布了新的文献求助10
8秒前
serena完成签到,获得积分10
9秒前
9秒前
9秒前
曾经的寇完成签到 ,获得积分10
10秒前
怕孤单的魔镜完成签到 ,获得积分20
10秒前
小坚果完成签到,获得积分10
10秒前
恒星的恒心完成签到 ,获得积分10
10秒前
10秒前
infinite发布了新的文献求助10
10秒前
科目三应助多喝开开采纳,获得10
11秒前
鳗鱼友灵发布了新的文献求助10
11秒前
大个应助漂亮的黄豆采纳,获得30
12秒前
ldroc完成签到,获得积分20
12秒前
13秒前
13秒前
科研通AI6应助占易形采纳,获得30
14秒前
嗯嗯的嗯嗯完成签到,获得积分10
15秒前
zzz发布了新的文献求助10
15秒前
FJLSDNMV发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643722
求助须知:如何正确求助?哪些是违规求助? 4761848
关于积分的说明 15022054
捐赠科研通 4801980
什么是DOI,文献DOI怎么找? 2567203
邀请新用户注册赠送积分活动 1524860
关于科研通互助平台的介绍 1484451