Structural health monitoring of exterior beam–column subassemblies through detailed numerical modelling and using various machine learning techniques

人工神经网络 结构健康监测 接头(建筑物) 粒子群优化 结构工程 失效模式及影响分析 梁(结构) 有限元法 机器学习 计算机科学 栏(排版) 人工智能 工程类 连接(主束)
作者
Giuseppe Santarsiero,Mayank Mishra,Manav Kumar Singh,Angelo Masi
出处
期刊:Machine learning with applications [Elsevier BV]
卷期号:6: 100190-100190 被引量:5
标识
DOI:10.1016/j.mlwa.2021.100190
摘要

Structural health monitoring of beam–column joints is paramount, as they are critical load-carrying components of reinforced concrete buildings. Evaluating the ultimate joint shear capacity and failure modes of beam–columns, especially in seismic events, is a crucial task, especially in view of life safety concerns. Traditional methods used to determine the joint shear capacity of beam–column joints are often inaccurate and cumbersome owing to improper accounting of governing parameters that influence beam–column joints’ behaviour. In this study, the performance of machine learning-based structural health monitoring techniques are evaluated in predicting the joint shear capacity and the mode of failure for the exterior beam–column joint taking into account their complex structural behaviour through both numerical modelling and various machine learning techniques. The data used to train and test the model was collected from laboratory experiments and other test data available in the literature. The results indicated the superiority of the proposed particle swarm optimized artificial neural network (PSO-ANN) and XGboost over previously used approaches. Hence, the proposed techniques can be efficiently used for monitoring of structural performance by making informed decision regarding condition assessment of RC buildings. • The paper presents application of machine learning techniques for structural health monitoring of beam–column joints. • This paper demonstrates the finite element modelling to predict the joints behaviour. • Several machine learning techniques are compared for predicting joint-shear capacity and failure mode for joints. • Machine learning models perform better in computational effort than numerical models for joint shear prediction. • The machine learning models facilitate quick condition assessment and preventive retrofitting solutions for the beam–column joints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rondab应助阿弥陀佛采纳,获得10
刚刚
XIAOWANG发布了新的文献求助10
1秒前
张小陈完成签到 ,获得积分10
1秒前
胡凤至完成签到,获得积分20
1秒前
英俊的铭应助哈哈哈采纳,获得10
4秒前
4秒前
5秒前
5秒前
可爱的函函应助胡凤至采纳,获得10
6秒前
6秒前
ED应助科研通管家采纳,获得30
8秒前
SYLH应助科研通管家采纳,获得20
8秒前
希望天下0贩的0应助雷予采纳,获得10
8秒前
q1356478314应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
搜集达人应助科研通管家采纳,获得30
8秒前
今后应助科研通管家采纳,获得10
8秒前
丘山发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
11秒前
XIAOWANG完成签到,获得积分10
11秒前
哈哈发布了新的文献求助10
13秒前
@@@发布了新的文献求助10
13秒前
Baili完成签到,获得积分10
15秒前
16秒前
哈哈哈发布了新的文献求助10
16秒前
19秒前
wbh发布了新的文献求助10
20秒前
刺眼的疼完成签到 ,获得积分10
22秒前
22秒前
Owen应助酷酷小子采纳,获得10
23秒前
Hello应助酷酷小子采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993371
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264545
捐赠科研通 3273794
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652