Air Quality Index Prediction Based on an Adaptive Dynamic Particle Swarm Optimized Bidirectional Gated Recurrent Neural Network–China Region

粒子群优化 均方误差 平均绝对百分比误差 人工神经网络 计算机科学 空气质量指数 算法 人工智能 统计 数学 气象学 地理
作者
Ping Li,Shengwei Wang,Hao Ji,Yulin Zhan,Honghong Li
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:4 (12) 被引量:4
标识
DOI:10.1002/adts.202100220
摘要

Abstract Accurate predictions of the air quality index (AQI) is critical for pollution control and air quality warning. However, this is challenging because of the nonlinearity of data and the uncertainty between data relationships. This paper proposes a combinatorial model based on an improved adaptive dynamic particle swarm optimization (ADPSO) algorithm to optimize a bidirectional gated recurrent unit (BiGRU) neural network to predict AQI time series and capture data dependence. The ADPSO method incorporates a dynamic spatial search strategy into the standard particle swarm optimization method, allowing the parameters to be dynamically adjusted to balance global and local search capabilities, thus improving the performance and effectiveness of this optimization process. Compared to the BiGRU model, the PSO‐BiGRU model, and the radial basis neural,the results of the improved algorithm reveal that the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) of the ADPSO‐BiGRU predicted air pollution index are smaller than the errors of the other three models. The accuracy of the ADPSO‐BiGRU prediction model is higher than that of the other models, and it aids in the development of effective regional air quality management policies to reduce the negative impacts of pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
merlideng完成签到,获得积分10
刚刚
刚刚
坦率的万言完成签到,获得积分10
1秒前
小兔发布了新的文献求助10
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得30
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
花生辣鱼发布了新的文献求助10
1秒前
黄bb应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
苹果柜子发布了新的文献求助20
2秒前
2秒前
Akim应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
yjwang发布了新的文献求助10
3秒前
monitor完成签到,获得积分20
3秒前
3秒前
和谐飞飞完成签到,获得积分10
4秒前
woodenfish完成签到,获得积分20
4秒前
所所应助WangSiwei采纳,获得10
4秒前
xiekai301发布了新的文献求助10
5秒前
YJH发布了新的文献求助10
5秒前
233完成签到,获得积分10
5秒前
wr781586发布了新的文献求助20
5秒前
6秒前
小蘑菇应助monitor采纳,获得10
6秒前
7秒前
7秒前
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958507
求助须知:如何正确求助?哪些是违规求助? 3504843
关于积分的说明 11120375
捐赠科研通 3236122
什么是DOI,文献DOI怎么找? 1788663
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802642