Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power

渗透力 盐度 纳米技术 材料科学 功率(物理) 化学工程 正渗透 生物物理学 化学 海洋学 反渗透 工程类 地质学 生物 物理 热力学 生物化学
作者
Weiwen Xin,Lei Jiang,Liping Wen
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (22): 4154-4165 被引量:97
标识
DOI:10.1021/acs.accounts.1c00431
摘要

ConspectusThe salinity gradient between seawater and river water has been identified as a promising, clean, renewable, and sustainable energy source that can be converted into electricity using ion-selective membranes in a reverse electrodialysis (RED) configuration. However, the major hindrance to current salinity gradient power (SGP) conversion is its poor energy efficiency due to the use of low-performance membrane processes, which affords power for neither miniaturized devices nor industrial-level applications. Nanofluidics, which combines strong confinement and surface charge effects at the nanoscale, contributes to novel transport properties, including excellent ion selectivity and high ion throughput; thus, nanofluidics may lead to technological breakthroughs and act as an emerging platform for harnessing SGP. Recently, two-dimensional (2D) materials have provided impressive energy extraction performance and further insight into fundamental transport mechanisms and theoretical feasibility. To reach the commercialization benchmark and real-world applications, an array of nanopores and channels that can be scaled up to industrial sizes is in high demand; additionally, it remains challenging to develop macroscale nanofluidic membranes that meet the "selectivity versus throughput" dual requirement. In the first section, we start with our understanding of the underlying mechanism of ion–channel interactions and transport characteristics in nanofluidic channel systems from the microscale to the macroscale. We review our recent efforts in this field by constructing a heterojunction with asymmetric ion transport behavior that generates rectification of the ion flux and creates an osmotic diode, which is composed of two nanofluidic layers with opposite polar charges and different chemical compositions. Another efficient way to improve the performance of the system is introducing charged functional materials intercalated into laminar 2D nanosheets. The intercalated nanofluidic material can be explained by two classical models to account for the synergistic effects that (i) improve the stability and mechanical properties of 2D materials with a fixed interlayer spacing and (ii) provide space charge for modulating ion diffusion; both of these effects contribute to its considerable energy conversion performance. Further, layer-by-layer membranes are superior to traditional membranes consisting of a simple stack because they retain their repulsion effect toward co-ions, largely strengthening the efficiency of ion separation and conversion. In particular, we highlight our views on the role of the 2D phase structure (e.g., semiconductor 2H phase and metallic 1T phase) in which the two phases differ from each other in physical and chemical properties, including ionic conductance, surface charge, and wetting, thereby presenting a state-of-the-art avenue for controlling ion transport. In view of the nature of 2D materials, we also report improved osmotic energy harvesting by exploiting the photoinduced heat gradient and electrons that increase ion mobility and surface charge, respectively. Finally, we point out specific research topics in which a combined project can certainly come into the limelight. For example, we discuss the combination of SGP with desalination systems and water splitting. We expect that this Account will stimulate further efforts toward functionalized 2D nanoporous materials and facilitate interdisciplinary efforts in chemistry, material engineering, environmental science, and nanotechnology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助DragonFly采纳,获得10
刚刚
1秒前
顾矜应助icey采纳,获得10
1秒前
jiulin完成签到,获得积分10
2秒前
长情咖啡豆完成签到,获得积分10
2秒前
5秒前
狗蛋完成签到,获得积分10
6秒前
所所应助坚定醉蓝采纳,获得10
7秒前
yujiaxin完成签到,获得积分10
7秒前
土行孙发布了新的文献求助10
7秒前
俺寻思能行完成签到,获得积分10
9秒前
9秒前
10秒前
LL完成签到,获得积分10
10秒前
lucaslucas完成签到,获得积分10
10秒前
简单又夏发布了新的文献求助100
10秒前
木槿完成签到,获得积分10
12秒前
ding应助绿地土狗采纳,获得10
12秒前
12秒前
mmmmmmgm完成签到 ,获得积分10
13秒前
张sjb发布了新的文献求助10
13秒前
Emma完成签到,获得积分10
14秒前
赘婿应助积极的白亦采纳,获得10
14秒前
沉默南露发布了新的文献求助30
14秒前
icey发布了新的文献求助10
14秒前
15秒前
AmyShen完成签到,获得积分10
15秒前
在水一方应助冷静的面包采纳,获得10
16秒前
DragonFly完成签到,获得积分10
16秒前
Jasper应助WYN采纳,获得10
16秒前
QQLL完成签到,获得积分10
17秒前
17秒前
17秒前
NPC-CBI完成签到,获得积分10
17秒前
科研通AI2S应助miss采纳,获得10
18秒前
18秒前
阡陌发布了新的文献求助30
19秒前
19秒前
土行孙完成签到,获得积分20
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424571
求助须知:如何正确求助?哪些是违规求助? 4538919
关于积分的说明 14164314
捐赠科研通 4455873
什么是DOI,文献DOI怎么找? 2443988
邀请新用户注册赠送积分活动 1435060
关于科研通互助平台的介绍 1412452