Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power

渗透力 盐度 纳米技术 材料科学 功率(物理) 化学工程 正渗透 生物物理学 化学 海洋学 反渗透 工程类 地质学 生物 物理 热力学 生物化学
作者
Weiwen Xin,Lei Jiang,Liping Wen
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (22): 4154-4165 被引量:97
标识
DOI:10.1021/acs.accounts.1c00431
摘要

ConspectusThe salinity gradient between seawater and river water has been identified as a promising, clean, renewable, and sustainable energy source that can be converted into electricity using ion-selective membranes in a reverse electrodialysis (RED) configuration. However, the major hindrance to current salinity gradient power (SGP) conversion is its poor energy efficiency due to the use of low-performance membrane processes, which affords power for neither miniaturized devices nor industrial-level applications. Nanofluidics, which combines strong confinement and surface charge effects at the nanoscale, contributes to novel transport properties, including excellent ion selectivity and high ion throughput; thus, nanofluidics may lead to technological breakthroughs and act as an emerging platform for harnessing SGP. Recently, two-dimensional (2D) materials have provided impressive energy extraction performance and further insight into fundamental transport mechanisms and theoretical feasibility. To reach the commercialization benchmark and real-world applications, an array of nanopores and channels that can be scaled up to industrial sizes is in high demand; additionally, it remains challenging to develop macroscale nanofluidic membranes that meet the "selectivity versus throughput" dual requirement. In the first section, we start with our understanding of the underlying mechanism of ion–channel interactions and transport characteristics in nanofluidic channel systems from the microscale to the macroscale. We review our recent efforts in this field by constructing a heterojunction with asymmetric ion transport behavior that generates rectification of the ion flux and creates an osmotic diode, which is composed of two nanofluidic layers with opposite polar charges and different chemical compositions. Another efficient way to improve the performance of the system is introducing charged functional materials intercalated into laminar 2D nanosheets. The intercalated nanofluidic material can be explained by two classical models to account for the synergistic effects that (i) improve the stability and mechanical properties of 2D materials with a fixed interlayer spacing and (ii) provide space charge for modulating ion diffusion; both of these effects contribute to its considerable energy conversion performance. Further, layer-by-layer membranes are superior to traditional membranes consisting of a simple stack because they retain their repulsion effect toward co-ions, largely strengthening the efficiency of ion separation and conversion. In particular, we highlight our views on the role of the 2D phase structure (e.g., semiconductor 2H phase and metallic 1T phase) in which the two phases differ from each other in physical and chemical properties, including ionic conductance, surface charge, and wetting, thereby presenting a state-of-the-art avenue for controlling ion transport. In view of the nature of 2D materials, we also report improved osmotic energy harvesting by exploiting the photoinduced heat gradient and electrons that increase ion mobility and surface charge, respectively. Finally, we point out specific research topics in which a combined project can certainly come into the limelight. For example, we discuss the combination of SGP with desalination systems and water splitting. We expect that this Account will stimulate further efforts toward functionalized 2D nanoporous materials and facilitate interdisciplinary efforts in chemistry, material engineering, environmental science, and nanotechnology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王达庆完成签到,获得积分10
1秒前
www完成签到,获得积分10
1秒前
tigger完成签到,获得积分10
1秒前
嘻嘻叮完成签到,获得积分10
2秒前
11111发布了新的文献求助20
2秒前
2秒前
2秒前
丰富的大地完成签到,获得积分10
2秒前
fei完成签到,获得积分10
2秒前
MOMO完成签到 ,获得积分10
3秒前
白白SAMA123完成签到,获得积分10
3秒前
自行车v完成签到,获得积分10
3秒前
曾sir完成签到,获得积分10
4秒前
passenger.完成签到,获得积分10
4秒前
Michael_li完成签到,获得积分10
4秒前
wanci应助aibobbb采纳,获得10
5秒前
liao发布了新的文献求助10
6秒前
莫道桑榆完成签到,获得积分10
6秒前
12233完成签到,获得积分10
7秒前
boyue完成签到,获得积分20
7秒前
JamesPei应助独特的从露采纳,获得10
8秒前
111完成签到,获得积分10
8秒前
四爷完成签到,获得积分10
8秒前
威武鸽子发布了新的文献求助10
8秒前
abcc1234完成签到,获得积分10
8秒前
Peppermint完成签到,获得积分10
9秒前
药小博完成签到,获得积分20
9秒前
Rgly完成签到 ,获得积分10
9秒前
summer完成签到,获得积分10
9秒前
璎珞发布了新的文献求助10
9秒前
9秒前
加快步伐完成签到,获得积分10
10秒前
10秒前
米斯特刘完成签到,获得积分10
11秒前
Yolo完成签到,获得积分10
11秒前
111完成签到,获得积分10
11秒前
英姑应助wuhao采纳,获得10
11秒前
三三完成签到,获得积分10
11秒前
11秒前
May发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960387
求助须知:如何正确求助?哪些是违规求助? 3506503
关于积分的说明 11130906
捐赠科研通 3238717
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871982
科研通“疑难数据库(出版商)”最低求助积分说明 803118