已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power

渗透力 盐度 纳米技术 材料科学 功率(物理) 化学工程 正渗透 生物物理学 化学 海洋学 反渗透 工程类 地质学 生物 热力学 物理 生物化学
作者
Weiwen Xin,Lei Jiang,Liping Wen
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (22): 4154-4165 被引量:122
标识
DOI:10.1021/acs.accounts.1c00431
摘要

The salinity gradient between seawater and river water has been identified as a promising, clean, renewable, and sustainable energy source that can be converted into electricity using ion-selective membranes in a reverse electrodialysis (RED) configuration. However, the major hindrance to current salinity gradient power (SGP) conversion is its poor energy efficiency due to the use of low-performance membrane processes, which affords power for neither miniaturized devices nor industrial-level applications. Nanofluidics, which combines strong confinement and surface charge effects at the nanoscale, contributes to novel transport properties, including excellent ion selectivity and high ion throughput; thus, nanofluidics may lead to technological breakthroughs and act as an emerging platform for harnessing SGP. Recently, two-dimensional (2D) materials have provided impressive energy extraction performance and further insight into fundamental transport mechanisms and theoretical feasibility. To reach the commercialization benchmark and real-world applications, an array of nanopores and channels that can be scaled up to industrial sizes is in high demand; additionally, it remains challenging to develop macroscale nanofluidic membranes that meet the "selectivity versus throughput" dual requirement. In the first section, we start with our understanding of the underlying mechanism of ion-channel interactions and transport characteristics in nanofluidic channel systems from the microscale to the macroscale. We review our recent efforts in this field by constructing a heterojunction with asymmetric ion transport behavior that generates rectification of the ion flux and creates an osmotic diode, which is composed of two nanofluidic layers with opposite polar charges and different chemical compositions. Another efficient way to improve the performance of the system is introducing charged functional materials intercalated into laminar 2D nanosheets. The intercalated nanofluidic material can be explained by two classical models to account for the synergistic effects that (i) improve the stability and mechanical properties of 2D materials with a fixed interlayer spacing and (ii) provide space charge for modulating ion diffusion; both of these effects contribute to its considerable energy conversion performance. Further, layer-by-layer membranes are superior to traditional membranes consisting of a simple stack because they retain their repulsion effect toward co-ions, largely strengthening the efficiency of ion separation and conversion. In particular, we highlight our views on the role of the 2D phase structure (e.g., semiconductor 2H phase and metallic 1T phase) in which the two phases differ from each other in physical and chemical properties, including ionic conductance, surface charge, and wetting, thereby presenting a state-of-the-art avenue for controlling ion transport. In view of the nature of 2D materials, we also report improved osmotic energy harvesting by exploiting the photoinduced heat gradient and electrons that increase ion mobility and surface charge, respectively. Finally, we point out specific research topics in which a combined project can certainly come into the limelight. For example, we discuss the combination of SGP with desalination systems and water splitting. We expect that this Account will stimulate further efforts toward functionalized 2D nanoporous materials and facilitate interdisciplinary efforts in chemistry, material engineering, environmental science, and nanotechnology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜美的秋尽完成签到,获得积分10
1秒前
科研通AI6.1应助初始采纳,获得10
4秒前
anders完成签到 ,获得积分10
4秒前
领导范儿应助不安诗云采纳,获得10
4秒前
霜月发布了新的文献求助10
5秒前
5秒前
6秒前
李四发布了新的文献求助10
7秒前
XPX完成签到 ,获得积分10
8秒前
追风少年发布了新的文献求助10
9秒前
10秒前
小耳朵发布了新的文献求助10
11秒前
Crw__完成签到,获得积分10
15秒前
111发布了新的文献求助10
15秒前
木土完成签到 ,获得积分10
16秒前
19秒前
Fluoxetine完成签到,获得积分10
20秒前
21秒前
sherry完成签到 ,获得积分10
21秒前
榛子完成签到,获得积分10
22秒前
Yuling完成签到,获得积分10
22秒前
冷酷不可发布了新的文献求助10
23秒前
Delight完成签到 ,获得积分0
23秒前
24秒前
liujian发布了新的文献求助10
29秒前
鱼鱼完成签到 ,获得积分10
29秒前
刘不动完成签到,获得积分10
31秒前
心系天下完成签到 ,获得积分10
31秒前
初始发布了新的文献求助10
32秒前
领导范儿应助沉默的早晨采纳,获得10
33秒前
34秒前
CipherSage应助liujian采纳,获得10
35秒前
冷酷不可完成签到,获得积分20
39秒前
nini完成签到,获得积分10
41秒前
42秒前
咕咕咕完成签到,获得积分10
43秒前
山东老铁完成签到,获得积分10
44秒前
49秒前
50秒前
HuanChen完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754539
求助须知:如何正确求助?哪些是违规求助? 5487532
关于积分的说明 15380217
捐赠科研通 4893123
什么是DOI,文献DOI怎么找? 2631743
邀请新用户注册赠送积分活动 1579677
关于科研通互助平台的介绍 1535399