已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power

纳米流体学 微尺度化学 反向电渗析 渗透力 纳米技术 海水淡化 材料科学 能量转换 正渗透 化学 电渗析 反渗透 热力学 物理 数学教育 生物化学 数学
作者
Weiwen Xin,Lei Jiang,Liping Wen
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (22): 4154-4165 被引量:80
标识
DOI:10.1021/acs.accounts.1c00431
摘要

ConspectusThe salinity gradient between seawater and river water has been identified as a promising, clean, renewable, and sustainable energy source that can be converted into electricity using ion-selective membranes in a reverse electrodialysis (RED) configuration. However, the major hindrance to current salinity gradient power (SGP) conversion is its poor energy efficiency due to the use of low-performance membrane processes, which affords power for neither miniaturized devices nor industrial-level applications. Nanofluidics, which combines strong confinement and surface charge effects at the nanoscale, contributes to novel transport properties, including excellent ion selectivity and high ion throughput; thus, nanofluidics may lead to technological breakthroughs and act as an emerging platform for harnessing SGP. Recently, two-dimensional (2D) materials have provided impressive energy extraction performance and further insight into fundamental transport mechanisms and theoretical feasibility. To reach the commercialization benchmark and real-world applications, an array of nanopores and channels that can be scaled up to industrial sizes is in high demand; additionally, it remains challenging to develop macroscale nanofluidic membranes that meet the "selectivity versus throughput" dual requirement. In the first section, we start with our understanding of the underlying mechanism of ion-channel interactions and transport characteristics in nanofluidic channel systems from the microscale to the macroscale. We review our recent efforts in this field by constructing a heterojunction with asymmetric ion transport behavior that generates rectification of the ion flux and creates an osmotic diode, which is composed of two nanofluidic layers with opposite polar charges and different chemical compositions. Another efficient way to improve the performance of the system is introducing charged functional materials intercalated into laminar 2D nanosheets. The intercalated nanofluidic material can be explained by two classical models to account for the synergistic effects that (i) improve the stability and mechanical properties of 2D materials with a fixed interlayer spacing and (ii) provide space charge for modulating ion diffusion; both of these effects contribute to its considerable energy conversion performance. Further, layer-by-layer membranes are superior to traditional membranes consisting of a simple stack because they retain their repulsion effect toward co-ions, largely strengthening the efficiency of ion separation and conversion. In particular, we highlight our views on the role of the 2D phase structure (e.g., semiconductor 2H phase and metallic 1T phase) in which the two phases differ from each other in physical and chemical properties, including ionic conductance, surface charge, and wetting, thereby presenting a state-of-the-art avenue for controlling ion transport. In view of the nature of 2D materials, we also report improved osmotic energy harvesting by exploiting the photoinduced heat gradient and electrons that increase ion mobility and surface charge, respectively. Finally, we point out specific research topics in which a combined project can certainly come into the limelight. For example, we discuss the combination of SGP with desalination systems and water splitting. We expect that this Account will stimulate further efforts toward functionalized 2D nanoporous materials and facilitate interdisciplinary efforts in chemistry, material engineering, environmental science, and nanotechnology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理的风华完成签到 ,获得积分10
3秒前
5秒前
俞成风发布了新的文献求助30
6秒前
哈哈哈完成签到 ,获得积分10
11秒前
xh完成签到,获得积分10
12秒前
王蒙完成签到,获得积分10
12秒前
俞成风完成签到,获得积分10
14秒前
hhhhhhh完成签到 ,获得积分10
14秒前
小马甲应助unique采纳,获得10
15秒前
NexusExplorer应助aoxiangcaizi12采纳,获得10
16秒前
Magaiese完成签到 ,获得积分0
17秒前
思源应助小会采纳,获得10
17秒前
科研通AI2S应助Rita采纳,获得10
20秒前
我爱读文献完成签到 ,获得积分10
24秒前
26秒前
29秒前
30秒前
wwwww完成签到 ,获得积分10
30秒前
万能图书馆应助天妒嘤才采纳,获得10
31秒前
行路难发布了新的文献求助10
32秒前
犹豫海白完成签到,获得积分10
33秒前
unique发布了新的文献求助10
35秒前
tttt发布了新的文献求助10
36秒前
38秒前
田様应助三顿饭吃一天采纳,获得10
38秒前
38秒前
晓晓来了完成签到,获得积分10
40秒前
小会发布了新的文献求助10
42秒前
一鸣发布了新的文献求助10
43秒前
46秒前
47秒前
48秒前
贪生spss关注了科研通微信公众号
48秒前
49秒前
东痴发布了新的文献求助10
50秒前
赘婿应助爱学习的孩纸采纳,获得10
50秒前
53秒前
llz发布了新的文献求助10
55秒前
55秒前
JamesPei应助yinqueshi采纳,获得10
55秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111269
求助须知:如何正确求助?哪些是违规求助? 2761459
关于积分的说明 7666105
捐赠科研通 2416559
什么是DOI,文献DOI怎么找? 1282569
科研通“疑难数据库(出版商)”最低求助积分说明 619038
版权声明 599491