An intelligent method for accident reconstruction involving car and e-bike coupling automatic simulation and multi-objective optimizations

运动学 计算机科学 模拟 毒物控制 碰撞 计算机安全 医学 经典力学 环境卫生 物理
作者
Yu Liu,Xiaobing Wan,Wei Xu,Liangliang Shi,Gongxun Deng,Zhonghao Bai
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:164: 106476-106476 被引量:18
标识
DOI:10.1016/j.aap.2021.106476
摘要

Car-electric bicycle (e-bike) accidents have been the subject of strong attention due to the widespread usage of e-bikes and a high casualty rate for their riders. Manually conducted accident reconstruction is based on the trial-and-error method with a limited number of parameter combinations, which makes it time-consuming and subjective. This paper aims to develop an intelligent method for accurate, high-efficient reconstruction of accidents involving cars and e-bikes. First, an automatic operation framework, which can drive the MADYMO program and perform results analysis automatically, was built with four multi-objective optimization algorithms available - NSGA-Ⅱ, NCGA, AMGA, and MOPS; The optimization condition was controlled with 12 design variables, 5 objective functions, and 3 constraints. Then, a real e-bike accident with surveillance video was reconstructed through the proposed framework to verify its validity using comparisons of simulated and actual rest positions, initial variables, kinematic response, and head injury. Lastly, the simulation data were used to study the effects of the initial variables on objectives with a multiple linear regression model. The results showed that it took only about 24 h in total for optimization with 480 automatic operations. Optimal conditions were searched at run numbers of 469, 430, 323, and 474 for NSGA-Ⅱ, NCGA, AMGA, and MOPS, respectively. NSGA-Ⅱ had the best performance for e-bike accident reconstruction with average errors of objectives below 5%; Good consistencies for the rider's kinematic response in three stages after collision were observed between simulations and screenshots from the surveillance video, as well as for velocities between the simulation and those estimated from the surveillance video and for head injury between the simulation and the medical report. In contrast to the subjective trial-and-error method that highly depends on the analyst's intuition and experience, this intelligent method is based on multi-objective optimization theory, with which results can be optimized in terms of the automatic change of initial variables. All the above comparisons demonstrate that the method is valid for effectively improving efficiency without simultaneously compromising accuracy. This intelligent method, coupling automatic simulation and multi-objective optimization, can also be applied to other accident reconstructions, and the significant order of initial variables' effects on objectives can provide recommendations for further reconstructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆dou发布了新的文献求助10
刚刚
旭日东升完成签到 ,获得积分10
1秒前
yyyyou完成签到,获得积分10
2秒前
科研通AI5应助xlj采纳,获得10
4秒前
Jenny应助WZ0904采纳,获得10
4秒前
弘一完成签到,获得积分10
4秒前
郑zhenglanyou完成签到 ,获得积分10
5秒前
7秒前
忧子忘完成签到,获得积分10
7秒前
8秒前
foreverchoi完成签到,获得积分10
8秒前
HH完成签到,获得积分20
8秒前
9秒前
whm完成签到,获得积分10
9秒前
11秒前
邬傥完成签到,获得积分10
12秒前
tomato应助执着采纳,获得20
13秒前
大方嵩发布了新的文献求助10
13秒前
梓ccc完成签到,获得积分10
13秒前
13秒前
求助发布了新的文献求助10
14秒前
风雨1210发布了新的文献求助10
14秒前
14秒前
15秒前
小梁要加油完成签到,获得积分20
15秒前
Alpha发布了新的文献求助10
16秒前
刘鹏宇发布了新的文献求助10
17秒前
zhangscience完成签到,获得积分10
17秒前
可爱的函函应助若狂采纳,获得10
18秒前
小蘑菇应助阿美采纳,获得30
18秒前
科研通AI2S应助机智小虾米采纳,获得10
19秒前
充电宝应助Xx.采纳,获得10
20秒前
zhangscience发布了新的文献求助10
21秒前
深情安青应助大方嵩采纳,获得10
22秒前
英俊的铭应助大方嵩采纳,获得10
22秒前
李还好完成签到,获得积分10
23秒前
满意的柏柳完成签到,获得积分10
24秒前
25秒前
26秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808