An intelligent method for accident reconstruction involving car and e-bike coupling automatic simulation and multi-objective optimizations

运动学 计算机科学 模拟 毒物控制 碰撞 计算机安全 医学 经典力学 环境卫生 物理
作者
Yu Liu,Xinming Wan,Wei Xu,Liangliang Shi,Gongxun Deng,Zhonghao Bai
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:164: 106476-106476 被引量:24
标识
DOI:10.1016/j.aap.2021.106476
摘要

Car-electric bicycle (e-bike) accidents have been the subject of strong attention due to the widespread usage of e-bikes and a high casualty rate for their riders. Manually conducted accident reconstruction is based on the trial-and-error method with a limited number of parameter combinations, which makes it time-consuming and subjective. This paper aims to develop an intelligent method for accurate, high-efficient reconstruction of accidents involving cars and e-bikes. First, an automatic operation framework, which can drive the MADYMO program and perform results analysis automatically, was built with four multi-objective optimization algorithms available - NSGA-Ⅱ, NCGA, AMGA, and MOPS; The optimization condition was controlled with 12 design variables, 5 objective functions, and 3 constraints. Then, a real e-bike accident with surveillance video was reconstructed through the proposed framework to verify its validity using comparisons of simulated and actual rest positions, initial variables, kinematic response, and head injury. Lastly, the simulation data were used to study the effects of the initial variables on objectives with a multiple linear regression model. The results showed that it took only about 24 h in total for optimization with 480 automatic operations. Optimal conditions were searched at run numbers of 469, 430, 323, and 474 for NSGA-Ⅱ, NCGA, AMGA, and MOPS, respectively. NSGA-Ⅱ had the best performance for e-bike accident reconstruction with average errors of objectives below 5%; Good consistencies for the rider's kinematic response in three stages after collision were observed between simulations and screenshots from the surveillance video, as well as for velocities between the simulation and those estimated from the surveillance video and for head injury between the simulation and the medical report. In contrast to the subjective trial-and-error method that highly depends on the analyst's intuition and experience, this intelligent method is based on multi-objective optimization theory, with which results can be optimized in terms of the automatic change of initial variables. All the above comparisons demonstrate that the method is valid for effectively improving efficiency without simultaneously compromising accuracy. This intelligent method, coupling automatic simulation and multi-objective optimization, can also be applied to other accident reconstructions, and the significant order of initial variables' effects on objectives can provide recommendations for further reconstructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinjinj发布了新的文献求助10
刚刚
Zkxxxx应助想写文章的绿采纳,获得30
刚刚
刚刚
幸福的尔竹完成签到,获得积分10
1秒前
2秒前
Ava应助绝望核弹采纳,获得10
2秒前
2秒前
斯文败类应助凌惠娟采纳,获得10
2秒前
大模型应助罗婉婷采纳,获得10
2秒前
Cactus应助王某明采纳,获得10
3秒前
田様应助雪雪儿采纳,获得10
3秒前
Frank发布了新的文献求助10
4秒前
4秒前
无花果应助轻松的万恶采纳,获得10
4秒前
5秒前
www发布了新的文献求助10
5秒前
研友_VZG64n发布了新的文献求助10
7秒前
7秒前
光光完成签到,获得积分10
8秒前
slp123456完成签到,获得积分20
8秒前
9秒前
1234发布了新的文献求助10
9秒前
无花果应助一鸣采纳,获得10
10秒前
10秒前
11秒前
时米米米发布了新的文献求助10
11秒前
大模型应助xinying采纳,获得10
11秒前
12秒前
12秒前
陌生完成签到 ,获得积分10
13秒前
领导范儿应助淡然的夜柳采纳,获得10
13秒前
14秒前
17秒前
JamesPei应助1234645678采纳,获得10
18秒前
18秒前
小二郎应助小盼虫采纳,获得10
18秒前
18秒前
19秒前
ttm发布了新的文献求助30
19秒前
蜡笔完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788