An intelligent method for accident reconstruction involving car and e-bike coupling automatic simulation and multi-objective optimizations

运动学 计算机科学 模拟 毒物控制 碰撞 计算机安全 医学 物理 环境卫生 经典力学
作者
Yu Liu,Xinming Wan,Wei Xu,Liangliang Shi,Gongxun Deng,Zhonghao Bai
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:164: 106476-106476 被引量:24
标识
DOI:10.1016/j.aap.2021.106476
摘要

Car-electric bicycle (e-bike) accidents have been the subject of strong attention due to the widespread usage of e-bikes and a high casualty rate for their riders. Manually conducted accident reconstruction is based on the trial-and-error method with a limited number of parameter combinations, which makes it time-consuming and subjective. This paper aims to develop an intelligent method for accurate, high-efficient reconstruction of accidents involving cars and e-bikes. First, an automatic operation framework, which can drive the MADYMO program and perform results analysis automatically, was built with four multi-objective optimization algorithms available - NSGA-Ⅱ, NCGA, AMGA, and MOPS; The optimization condition was controlled with 12 design variables, 5 objective functions, and 3 constraints. Then, a real e-bike accident with surveillance video was reconstructed through the proposed framework to verify its validity using comparisons of simulated and actual rest positions, initial variables, kinematic response, and head injury. Lastly, the simulation data were used to study the effects of the initial variables on objectives with a multiple linear regression model. The results showed that it took only about 24 h in total for optimization with 480 automatic operations. Optimal conditions were searched at run numbers of 469, 430, 323, and 474 for NSGA-Ⅱ, NCGA, AMGA, and MOPS, respectively. NSGA-Ⅱ had the best performance for e-bike accident reconstruction with average errors of objectives below 5%; Good consistencies for the rider's kinematic response in three stages after collision were observed between simulations and screenshots from the surveillance video, as well as for velocities between the simulation and those estimated from the surveillance video and for head injury between the simulation and the medical report. In contrast to the subjective trial-and-error method that highly depends on the analyst's intuition and experience, this intelligent method is based on multi-objective optimization theory, with which results can be optimized in terms of the automatic change of initial variables. All the above comparisons demonstrate that the method is valid for effectively improving efficiency without simultaneously compromising accuracy. This intelligent method, coupling automatic simulation and multi-objective optimization, can also be applied to other accident reconstructions, and the significant order of initial variables' effects on objectives can provide recommendations for further reconstructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc完成签到,获得积分10
5秒前
水草帽完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
16秒前
华仔应助tuihuo采纳,获得10
22秒前
su完成签到 ,获得积分0
39秒前
量子星尘发布了新的文献求助10
45秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
baa完成签到,获得积分10
1分钟前
zero桥完成签到,获得积分10
1分钟前
调皮平蓝完成签到,获得积分10
1分钟前
外向的芒果完成签到 ,获得积分10
1分钟前
爱笑的绮露完成签到 ,获得积分10
1分钟前
猪鼓励完成签到,获得积分10
1分钟前
GG爆完成签到,获得积分10
1分钟前
汉堡包应助今晚打老虎采纳,获得10
1分钟前
mrconli完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
落寞的幻竹完成签到,获得积分10
1分钟前
ldr888完成签到,获得积分10
1分钟前
hebhm完成签到,获得积分10
1分钟前
CHEN完成签到 ,获得积分10
1分钟前
1分钟前
自然代亦完成签到 ,获得积分10
1分钟前
1分钟前
badgerwithfisher完成签到,获得积分10
1分钟前
huluwa完成签到,获得积分10
1分钟前
爱听歌时光完成签到,获得积分10
1分钟前
1分钟前
毛毛的家长完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
缥缈的水彤完成签到,获得积分10
1分钟前
1分钟前
瘦瘦的果汁完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
李思雨完成签到 ,获得积分10
2分钟前
宁123完成签到 ,获得积分10
2分钟前
拼搏映菡完成签到 ,获得积分10
2分钟前
Wang完成签到 ,获得积分20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539119
求助须知:如何正确求助?哪些是违规求助? 4625952
关于积分的说明 14597124
捐赠科研通 4566751
什么是DOI,文献DOI怎么找? 2503572
邀请新用户注册赠送积分活动 1481546
关于科研通互助平台的介绍 1453044