An intelligent method for accident reconstruction involving car and e-bike coupling automatic simulation and multi-objective optimizations

运动学 计算机科学 模拟 毒物控制 碰撞 计算机安全 医学 物理 环境卫生 经典力学
作者
Yu Liu,Xinming Wan,Wei Xu,Liangliang Shi,Gongxun Deng,Zhonghao Bai
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:164: 106476-106476 被引量:24
标识
DOI:10.1016/j.aap.2021.106476
摘要

Car-electric bicycle (e-bike) accidents have been the subject of strong attention due to the widespread usage of e-bikes and a high casualty rate for their riders. Manually conducted accident reconstruction is based on the trial-and-error method with a limited number of parameter combinations, which makes it time-consuming and subjective. This paper aims to develop an intelligent method for accurate, high-efficient reconstruction of accidents involving cars and e-bikes. First, an automatic operation framework, which can drive the MADYMO program and perform results analysis automatically, was built with four multi-objective optimization algorithms available - NSGA-Ⅱ, NCGA, AMGA, and MOPS; The optimization condition was controlled with 12 design variables, 5 objective functions, and 3 constraints. Then, a real e-bike accident with surveillance video was reconstructed through the proposed framework to verify its validity using comparisons of simulated and actual rest positions, initial variables, kinematic response, and head injury. Lastly, the simulation data were used to study the effects of the initial variables on objectives with a multiple linear regression model. The results showed that it took only about 24 h in total for optimization with 480 automatic operations. Optimal conditions were searched at run numbers of 469, 430, 323, and 474 for NSGA-Ⅱ, NCGA, AMGA, and MOPS, respectively. NSGA-Ⅱ had the best performance for e-bike accident reconstruction with average errors of objectives below 5%; Good consistencies for the rider's kinematic response in three stages after collision were observed between simulations and screenshots from the surveillance video, as well as for velocities between the simulation and those estimated from the surveillance video and for head injury between the simulation and the medical report. In contrast to the subjective trial-and-error method that highly depends on the analyst's intuition and experience, this intelligent method is based on multi-objective optimization theory, with which results can be optimized in terms of the automatic change of initial variables. All the above comparisons demonstrate that the method is valid for effectively improving efficiency without simultaneously compromising accuracy. This intelligent method, coupling automatic simulation and multi-objective optimization, can also be applied to other accident reconstructions, and the significant order of initial variables' effects on objectives can provide recommendations for further reconstructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
3秒前
3秒前
Deseorz发布了新的文献求助10
4秒前
WFLLL发布了新的文献求助10
5秒前
6秒前
fan完成签到,获得积分10
7秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
Deseorz完成签到,获得积分10
10秒前
FashionBoy应助Davidjun采纳,获得10
10秒前
金垚发布了新的文献求助10
10秒前
10秒前
10秒前
12秒前
元妹妹完成签到 ,获得积分10
12秒前
赵紫怡发布了新的文献求助10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
李健应助DT采纳,获得20
15秒前
15秒前
英俊的铭应助11111采纳,获得10
15秒前
陈飞达发布了新的文献求助30
15秒前
852应助炙热芷蕊采纳,获得10
16秒前
Orange应助眼睛大凉面采纳,获得10
16秒前
nicheng发布了新的文献求助10
16秒前
宋芝璇发布了新的文献求助10
16秒前
www完成签到,获得积分10
16秒前
ATPATP完成签到 ,获得积分10
16秒前
16秒前
心秦发布了新的文献求助10
17秒前
传奇3应助温暖芒果采纳,获得10
17秒前
17秒前
田様应助爱听歌笑寒采纳,获得10
19秒前
ding应助seven采纳,获得10
19秒前
Owen应助baomingqiu采纳,获得10
21秒前
21秒前
隐形曼青应助fairy采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675597
求助须知:如何正确求助?哪些是违规求助? 4947581
关于积分的说明 15153918
捐赠科研通 4834916
什么是DOI,文献DOI怎么找? 2589694
邀请新用户注册赠送积分活动 1543483
关于科研通互助平台的介绍 1501233