An intelligent method for accident reconstruction involving car and e-bike coupling automatic simulation and multi-objective optimizations

运动学 计算机科学 模拟 毒物控制 碰撞 计算机安全 医学 经典力学 环境卫生 物理
作者
Yu Liu,Xinming Wan,Wei Xu,Liangliang Shi,Gongxun Deng,Zhonghao Bai
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:164: 106476-106476 被引量:24
标识
DOI:10.1016/j.aap.2021.106476
摘要

Car-electric bicycle (e-bike) accidents have been the subject of strong attention due to the widespread usage of e-bikes and a high casualty rate for their riders. Manually conducted accident reconstruction is based on the trial-and-error method with a limited number of parameter combinations, which makes it time-consuming and subjective. This paper aims to develop an intelligent method for accurate, high-efficient reconstruction of accidents involving cars and e-bikes. First, an automatic operation framework, which can drive the MADYMO program and perform results analysis automatically, was built with four multi-objective optimization algorithms available - NSGA-Ⅱ, NCGA, AMGA, and MOPS; The optimization condition was controlled with 12 design variables, 5 objective functions, and 3 constraints. Then, a real e-bike accident with surveillance video was reconstructed through the proposed framework to verify its validity using comparisons of simulated and actual rest positions, initial variables, kinematic response, and head injury. Lastly, the simulation data were used to study the effects of the initial variables on objectives with a multiple linear regression model. The results showed that it took only about 24 h in total for optimization with 480 automatic operations. Optimal conditions were searched at run numbers of 469, 430, 323, and 474 for NSGA-Ⅱ, NCGA, AMGA, and MOPS, respectively. NSGA-Ⅱ had the best performance for e-bike accident reconstruction with average errors of objectives below 5%; Good consistencies for the rider's kinematic response in three stages after collision were observed between simulations and screenshots from the surveillance video, as well as for velocities between the simulation and those estimated from the surveillance video and for head injury between the simulation and the medical report. In contrast to the subjective trial-and-error method that highly depends on the analyst's intuition and experience, this intelligent method is based on multi-objective optimization theory, with which results can be optimized in terms of the automatic change of initial variables. All the above comparisons demonstrate that the method is valid for effectively improving efficiency without simultaneously compromising accuracy. This intelligent method, coupling automatic simulation and multi-objective optimization, can also be applied to other accident reconstructions, and the significant order of initial variables' effects on objectives can provide recommendations for further reconstructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助lbw采纳,获得10
1秒前
科研开门发布了新的文献求助10
1秒前
多和5的武器完成签到,获得积分10
1秒前
研友_ZAe4qZ完成签到,获得积分20
2秒前
2秒前
2秒前
今后应助gy采纳,获得10
2秒前
11完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
5秒前
5秒前
卡西法完成签到,获得积分10
5秒前
机灵的忆梅完成签到,获得积分10
5秒前
不想干活应助infe采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
不想干活应助zjq采纳,获得10
7秒前
典雅的俊驰应助Jing采纳,获得10
8秒前
咸鱼发布了新的文献求助20
8秒前
8秒前
8秒前
爆米花应助Jane采纳,获得10
8秒前
甘蔗发布了新的文献求助30
8秒前
8秒前
淡然谷秋完成签到 ,获得积分10
9秒前
上官若男应助柒月樊霜采纳,获得10
9秒前
木头人呐完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
诚心中恶发布了新的文献求助10
11秒前
背书强完成签到 ,获得积分10
11秒前
11秒前
Jack123完成签到,获得积分10
12秒前
SciGPT应助认真的缘郡采纳,获得10
12秒前
12秒前
大模型应助乖猫要努力采纳,获得10
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615619
求助须知:如何正确求助?哪些是违规求助? 4019269
关于积分的说明 12441658
捐赠科研通 3702297
什么是DOI,文献DOI怎么找? 2041522
邀请新用户注册赠送积分活动 1074192
科研通“疑难数据库(出版商)”最低求助积分说明 957826