An intelligent method for accident reconstruction involving car and e-bike coupling automatic simulation and multi-objective optimizations

运动学 计算机科学 模拟 毒物控制 碰撞 计算机安全 医学 经典力学 环境卫生 物理
作者
Yu Liu,Xinming Wan,Wei Xu,Liangliang Shi,Gongxun Deng,Zhonghao Bai
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:164: 106476-106476 被引量:24
标识
DOI:10.1016/j.aap.2021.106476
摘要

Car-electric bicycle (e-bike) accidents have been the subject of strong attention due to the widespread usage of e-bikes and a high casualty rate for their riders. Manually conducted accident reconstruction is based on the trial-and-error method with a limited number of parameter combinations, which makes it time-consuming and subjective. This paper aims to develop an intelligent method for accurate, high-efficient reconstruction of accidents involving cars and e-bikes. First, an automatic operation framework, which can drive the MADYMO program and perform results analysis automatically, was built with four multi-objective optimization algorithms available - NSGA-Ⅱ, NCGA, AMGA, and MOPS; The optimization condition was controlled with 12 design variables, 5 objective functions, and 3 constraints. Then, a real e-bike accident with surveillance video was reconstructed through the proposed framework to verify its validity using comparisons of simulated and actual rest positions, initial variables, kinematic response, and head injury. Lastly, the simulation data were used to study the effects of the initial variables on objectives with a multiple linear regression model. The results showed that it took only about 24 h in total for optimization with 480 automatic operations. Optimal conditions were searched at run numbers of 469, 430, 323, and 474 for NSGA-Ⅱ, NCGA, AMGA, and MOPS, respectively. NSGA-Ⅱ had the best performance for e-bike accident reconstruction with average errors of objectives below 5%; Good consistencies for the rider's kinematic response in three stages after collision were observed between simulations and screenshots from the surveillance video, as well as for velocities between the simulation and those estimated from the surveillance video and for head injury between the simulation and the medical report. In contrast to the subjective trial-and-error method that highly depends on the analyst's intuition and experience, this intelligent method is based on multi-objective optimization theory, with which results can be optimized in terms of the automatic change of initial variables. All the above comparisons demonstrate that the method is valid for effectively improving efficiency without simultaneously compromising accuracy. This intelligent method, coupling automatic simulation and multi-objective optimization, can also be applied to other accident reconstructions, and the significant order of initial variables' effects on objectives can provide recommendations for further reconstructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23发布了新的文献求助20
1秒前
shouz应助热情盼柳采纳,获得10
2秒前
2秒前
2秒前
3秒前
风语村发布了新的文献求助10
4秒前
斯文败类应助Yy123采纳,获得10
5秒前
bt完成签到,获得积分10
5秒前
Merryonwine发布了新的文献求助10
6秒前
Owen应助认真的潇洒采纳,获得10
7秒前
风中问晴完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
10秒前
嘻嘻哈哈应助liudun23采纳,获得10
12秒前
whysoserious发布了新的文献求助10
12秒前
谦逊的饼完成签到,获得积分10
12秒前
科目三应助大梦要努力采纳,获得10
14秒前
哦萨尔发布了新的文献求助10
14秒前
踏实半烟完成签到,获得积分10
14秒前
生动不平发布了新的文献求助10
15秒前
和老爹豆豆完成签到,获得积分20
16秒前
77完成签到 ,获得积分10
16秒前
粗犷的尔阳完成签到,获得积分10
18秒前
wenliu完成签到,获得积分10
18秒前
随便吧发布了新的文献求助10
20秒前
153266916完成签到 ,获得积分10
21秒前
21秒前
orixero应助科研通管家采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
23秒前
long应助科研通管家采纳,获得10
23秒前
Owen应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得10
24秒前
酷波er应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252465
求助须知:如何正确求助?哪些是违规求助? 4416187
关于积分的说明 13748934
捐赠科研通 4288199
什么是DOI,文献DOI怎么找? 2352788
邀请新用户注册赠送积分活动 1349608
关于科研通互助平台的介绍 1309131