Evaluation of fast fluid dynamics with different turbulence models for predicting outdoor airflow and pollutant dispersion

湍流模型 湍流 计算流体力学 大涡模拟 气流 Kε湍流模型 K-omega湍流模型 模拟 机械 计算机科学 统计物理学 物理 热力学
作者
Ting Dai,Sumei Liu,Junjie Liu,Nan Jiang,Wei Liu,Qingyan Chen
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:77: 103583-103583 被引量:50
标识
DOI:10.1016/j.scs.2021.103583
摘要

Fast fluid dynamics (FFD) could provide informative and efficient airflow and concentration simulation. The commonly used turbulence model in FFD was Re-Normalization Group (RNG) k-ε turbulence model which solved two transport equations to obtain eddy viscosity. To reduce this part of time and further improve computing speed, this investigation implemented no turbulence model, Smagorinsky model and dynamic Smagorinsky model which calculated eddy viscosity without solving equation in FFD in an open-source program, OpenFOAM. By simulating several outdoor cases of varying complexity and comparing with experiment and CFD, this study assessed the accuracy and computing efficiency of FFD with four turbulence models. Compared with CFD, FFD greatly improved the computing speed without reducing accuracy. The simulation of FFD without turbulence model was fast but inaccurate. FFD with Smagorinsky model increased the computing speed while ensuring the same accuracy as RNG k-ε turbulence model. FFD with dynamic Smagorinsky model provided accurate results with high efficiency. Computation errors arose mainly from inaccurate prediction of turbulence dispersion. The computing cost was associated with the number of transport equations and calculation method of model coefficient. This investigation recommended the use of FFD with dynamic Smagorinsky model for outdoor airflow and pollutant dispersion studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA发布了新的文献求助10
刚刚
在水一方应助伏坎采纳,获得10
刚刚
刚刚
王盼发布了新的文献求助10
刚刚
刚刚
乐乐应助zhonglv7采纳,获得10
1秒前
1秒前
呜呜发布了新的文献求助10
1秒前
1秒前
2秒前
yy完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
liu发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
祈冬发布了新的文献求助10
6秒前
科研通AI6应助yuan采纳,获得10
6秒前
Silence完成签到,获得积分10
6秒前
汉堡包应助甜甜采纳,获得10
6秒前
6秒前
领导范儿应助AK采纳,获得10
6秒前
妖娆发布了新的文献求助10
6秒前
叶子发布了新的文献求助10
6秒前
7秒前
7秒前
fick发布了新的文献求助10
7秒前
AQ完成签到,获得积分10
8秒前
wuji2077完成签到,获得积分10
8秒前
8秒前
Ava应助红糖发糕采纳,获得10
8秒前
Twonej应助Ljm采纳,获得30
8秒前
9秒前
ding应助傲娇如天采纳,获得10
9秒前
9秒前
9秒前
聪明熠彤发布了新的文献求助20
9秒前
10秒前
情怀应助霸气青寒采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407