Evaluation of fast fluid dynamics with different turbulence models for predicting outdoor airflow and pollutant dispersion

湍流模型 湍流 计算流体力学 大涡模拟 气流 Kε湍流模型 K-omega湍流模型 模拟 机械 计算机科学 统计物理学 物理 热力学
作者
Ting Dai,Sumei Liu,Junjie Liu,Nan Jiang,Wei Liu,Qingyan Chen
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:77: 103583-103583 被引量:50
标识
DOI:10.1016/j.scs.2021.103583
摘要

Fast fluid dynamics (FFD) could provide informative and efficient airflow and concentration simulation. The commonly used turbulence model in FFD was Re-Normalization Group (RNG) k-ε turbulence model which solved two transport equations to obtain eddy viscosity. To reduce this part of time and further improve computing speed, this investigation implemented no turbulence model, Smagorinsky model and dynamic Smagorinsky model which calculated eddy viscosity without solving equation in FFD in an open-source program, OpenFOAM. By simulating several outdoor cases of varying complexity and comparing with experiment and CFD, this study assessed the accuracy and computing efficiency of FFD with four turbulence models. Compared with CFD, FFD greatly improved the computing speed without reducing accuracy. The simulation of FFD without turbulence model was fast but inaccurate. FFD with Smagorinsky model increased the computing speed while ensuring the same accuracy as RNG k-ε turbulence model. FFD with dynamic Smagorinsky model provided accurate results with high efficiency. Computation errors arose mainly from inaccurate prediction of turbulence dispersion. The computing cost was associated with the number of transport equations and calculation method of model coefficient. This investigation recommended the use of FFD with dynamic Smagorinsky model for outdoor airflow and pollutant dispersion studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助xiaodaiduyan采纳,获得10
刚刚
万能图书馆应助年年年年采纳,获得10
1秒前
诸葛语琴发布了新的文献求助10
2秒前
2秒前
2秒前
平淡新晴发布了新的文献求助10
2秒前
我是老大应助石榴汁的书采纳,获得10
3秒前
3秒前
英姑应助洪勇采纳,获得10
3秒前
3秒前
时间完成签到,获得积分10
5秒前
Paperduoduo完成签到,获得积分10
5秒前
美好如凡完成签到,获得积分10
5秒前
6秒前
6秒前
天天快乐应助追忆淮采纳,获得10
7秒前
陈豆豆发布了新的文献求助10
7秒前
隐形曼青应助略略略采纳,获得10
7秒前
Gonboo发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助30
7秒前
8秒前
Woowon发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
liffchao发布了新的文献求助10
12秒前
杨立胜发布了新的文献求助10
12秒前
12秒前
12秒前
敬老院N号完成签到,获得积分0
13秒前
翊然甜周完成签到,获得积分10
13秒前
上官若男应助tinale_huang采纳,获得10
14秒前
14秒前
大气靳发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
2284456374完成签到,获得积分10
16秒前
精明的听寒完成签到,获得积分10
17秒前
gogogo完成签到 ,获得积分10
17秒前
情怀应助xinying采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717887
求助须知:如何正确求助?哪些是违规求助? 5248869
关于积分的说明 15283627
捐赠科研通 4867961
什么是DOI,文献DOI怎么找? 2613978
邀请新用户注册赠送积分活动 1563880
关于科研通互助平台的介绍 1521369