纳米材料基催化剂
催化作用
氢氧化物
氢气储存
氢
激进的
材料科学
纳米颗粒
无机化学
介孔材料
化学
核化学
纳米技术
有机化学
作者
Xiaoran Liu,Jiaming Shi,Xuefeng Bai,Wei Wu
标识
DOI:10.1016/j.ultsonch.2021.105840
摘要
Highly active Ru nanoparticles (Ru NPs) supported on NiFe layered double hydroxide (Ru/NiFe-LDH) are prepared easily using ultrasound-assisted reduction method without chemical reductants and stabilizers. The plentiful hydroxyls on NiFe-LDH are excited into hydrogen radicals (H) under the action of ultrasound for reducing Ru3+ to Ru0. Ru NPs with an average particle size of 1.26 nm highly disperse on the mesopore-like surface of NiFe-LDH, which improve the catalytic performance for N-ethylcarbazole (NEC) hydrogenation. The experimental results show that 5Ru/NiFe-LDH-300-60 exhibits the best catalytic performance with 100% conversion of NEC, 98.88% yield of dodecahydro-N-ethylcarbazole (12H-NEC) and 5.77 wt% mass hydrogen storage capacity under the reaction conditions of 110 ℃, 6 MPa and mRu:mNEC = 0.15 wt% for 80 min. The kinetics study shows that the apparent activation energy is only 25.15 kJ/mol, which is the lowest in the reported literatures. Ru complexes with O-contained groups on NiFe-LDH, improving the catalytic stability in NEC hydrogenation.
科研通智能强力驱动
Strongly Powered by AbleSci AI