亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning guided prediction of mechanical properties of TPMS structures based on finite element simulation for biomedical titanium

有限元法 阿达布思 材料科学 弹性模量 均方误差 格子(音乐) 机械工程 结构工程 计算机科学 复合材料 人工智能 数学 工程类 声学 物理 冶金 支持向量机 统计
作者
Jiwu Zhang,Jingxiao Zhao,Qiguo Rong,Weibin Yu,Xiucheng Li,R.D.K. Misra
出处
期刊:Materials Technology [Informa]
卷期号:: 1-8 被引量:12
标识
DOI:10.1080/10667857.2021.1999558
摘要

In the present study, we predict elastic modulus of triply periodic minimal surface (TPMS) structures for biomedical material, titanium, using three different machine learning (ML) methods (Random Forest, XGBoost and Adaboost). A dataset is generated from elastic finite element analysis, which model has large number of lattice-cells (4 × 4 × 4 lattice-cells). In terms of three manufacturing features including unit configuration and two structural parameters (k and C), the elastic moduli of TPMS structures are calculated. It was found that all methods have high R2 and low mean square error (MSE). The Adaboost performed best (R2 = 0.959, MSE = 0.532) and the RF performed worst (R2 = 0.929, MSE = 0.923). This shows that ML methods realise a leap from limited results of finite element analysis to theoretically infinite results with ML model, and computing efficiency has also been greatly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
希望天下0贩的0应助DJ国采纳,获得10
48秒前
58秒前
59秒前
DJ国发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
丁老三完成签到 ,获得积分10
2分钟前
炙热的夜雪完成签到 ,获得积分10
2分钟前
2分钟前
这学真难读下去完成签到,获得积分10
2分钟前
4分钟前
vain完成签到,获得积分10
4分钟前
袁雪蓓完成签到 ,获得积分10
4分钟前
lvsehx发布了新的文献求助10
5分钟前
Polymer72应助KeYXB采纳,获得10
5分钟前
yyk完成签到,获得积分10
5分钟前
5分钟前
天天发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
852应助lvsehx采纳,获得10
5分钟前
天天完成签到,获得积分10
5分钟前
6分钟前
冷静的寒荷完成签到 ,获得积分10
6分钟前
lvsehx发布了新的文献求助10
6分钟前
上官若男应助钟可可采纳,获得10
6分钟前
koh完成签到,获得积分10
6分钟前
钟可可完成签到,获得积分10
7分钟前
KeYXB完成签到,获得积分10
7分钟前
Polymer72应助KeYXB采纳,获得10
7分钟前
7分钟前
andrele应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
钟可可发布了新的文献求助10
7分钟前
7分钟前
也是难得取个名完成签到 ,获得积分10
7分钟前
天牛不说话完成签到,获得积分10
7分钟前
光亮的自行车完成签到 ,获得积分10
8分钟前
岸在海的深处完成签到 ,获得积分10
8分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3338922
求助须知:如何正确求助?哪些是违规求助? 2967044
关于积分的说明 8627845
捐赠科研通 2646410
什么是DOI,文献DOI怎么找? 1449171
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660162