Mn3+-rich oxide/persistent luminescence nanoparticles achieve light-free generation of singlet oxygen and hydroxyl radicals for responsive imaging and tumor treatment

单线态氧 激进的 光化学 纳米颗粒 化学 持续发光 氧气 发光 单重态 氧化物 材料科学 放射化学 纳米技术 光电子学 激发态 有机化学 核物理学 物理 热释光
作者
Dandan Ding,Yushuo Feng,Ruixue Qin,Shi Li,Lei Chen,Jinpeng Jing,Chutong Zhang,Wenjing Sun,Yimin Li,Xiaohong Chen,Hongmin Chen
出处
期刊:Theranostics [Ivyspring International Publisher]
卷期号:11 (15): 7439-7449 被引量:22
标识
DOI:10.7150/thno.62437
摘要

X-ray excited persistent luminescence (XEPL) imaging has attracted increasing attention in biomedical imaging due to elimination of autofluorescence, high signal-to-noise ratio and repeatable activation with high penetration. However, optical imaging still suffers from limited for high spatial resolution. Methods: Herein, we report Mn3+-rich manganese oxide (MnOx)-coated chromium-doped zinc gallogermanate (ZGGO) nanoparticles (Mn-ZGGOs). Enhanced XEPL and magnetic resonance (MR) imaging were investigated by the decomposition of MnOx shell in the environment of tumors. We also evaluated the tumor cell-killing mechanism by detection of reactive oxygen (ROS), lipid peroxidation and mitochondrial membrane potential changes in vitro. Furthermore, the in vivo biodistribution, imaging and therapy were studied by U87MG tumor-bearing mice. Results: In the tumor region, the MnOx shell is quickly decomposed to produce Mn3+ and oxygen (O2) to directly generate singlet oxygen (1O2). The resulting Mn2+ transforms endogenous H2O2 into highly toxic hydroxyl radical (·OH) via a Fenton-like reaction. The Mn2+ ions and ZGGOs also exhibit excellent T1-weighted magnetic resonance (MR) imaging and ultrasensitive XEPL imaging in tumors. Conclusion: Both the responsive dual-mode imaging and simultaneous self-supplied O2 for the production of 1O2 and oxygen-independent ·OH in tumors allow for more accurate diagnosis of deep tumors and more efficient inhibition of tumor growth without external activation energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
星辰大海应助伽娜采纳,获得10
1秒前
黄利关注了科研通微信公众号
1秒前
1秒前
一只獾獾发布了新的文献求助10
2秒前
劲秉应助DOU采纳,获得20
2秒前
2秒前
3秒前
科目三应助goo采纳,获得10
3秒前
Altria完成签到,获得积分10
3秒前
4秒前
arya发布了新的文献求助10
4秒前
4秒前
4秒前
Misaki发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
颛颛完成签到 ,获得积分10
5秒前
6秒前
韆木发布了新的文献求助30
6秒前
6秒前
杨卓雅完成签到,获得积分10
6秒前
无语发布了新的文献求助10
7秒前
风趣的亦巧完成签到,获得积分10
7秒前
7秒前
肥猫发布了新的文献求助10
7秒前
7秒前
山竹发布了新的文献求助10
7秒前
越遇发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
安详靖巧发布了新的文献求助10
8秒前
8秒前
暴走诺亚发布了新的文献求助10
8秒前
零碎的岛屿完成签到,获得积分10
8秒前
科研通AI5应助swagger采纳,获得10
9秒前
月下天成发布了新的文献求助20
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339