Joint Opposite Selection (JOS): A premiere joint of selective leading opposition and dynamic opposite enhanced Harris’ hawks optimization for solving single-objective problems

反对派(政治) 跳跃 计算机科学 人工智能 水准点(测量) 数学 数学优化 算法 地理 物理 法学 政治学 大地测量学 量子力学 政治
作者
Florentina Yuni Arini,Sirapat Chiewchanwattana,Chitsutha Soomlek,Khamron Sunat
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:188: 116001-116001 被引量:29
标识
DOI:10.1016/j.eswa.2021.116001
摘要

In this paper, we proposed Joint Opposite Selection (JOS) operator that is a joint of two opposition learning techniques: the Selective Leading Opposition (SLO) and the Dynamic Opposite (DO). SLO uses a linearly decreasing threshold value to determine the close distance dimension of the search agents. DO provides the search agents chances to expand their abilities in the search space. We applied JOS to the Harris Hawks Optimization (HHO), the performance is increased because JOS balances the capability of exploration phase by using SLO and exploitation phase by using DO. The new algorithm, named Harris' Hawks Optimization-Joint Opposite Selection (HHO-JOS), is also proposed in this research as an enhanced version of HHO to solve single-objective problems. When the hawks deploy JOS, SLO assists the hawks to succeed in exploitation phase by changing their close distance dimension and DO tries to diverse the search space range of the hawks in the exploration phase using a Random Jump Strategy (RJS). The sufficient Jumping rate (Jr) of DO in HHO-JOS is 0.25, according to our experimental results. The proposed algorithm was included in a competition conducted on 30 benchmark functions of CEC 2014 and 29 benchmark functions of CEC 2017. Both benchmarks contain collections of single-objective problems for real parameter numerical optimization. The problems were employed to evaluate and compare the proposed HHO-JOS to the original HHO, three variations of OBLs embedded in the original HHO, and 31 nature-inspired algorithms by using a scoring metric. The results of the competition showed that the premiere JOS on HHO consistently achieves robustness performance on CEC 2014 and CEC 2017. Comprehensive statistical analysis also demonstrated that HHO-JOS can compete with many leading optimization algorithms. Therefore, we can conclude that the proposed joint opposite selection is well-matched to HHO and succeeds in elevating HHO-JOS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助Kane采纳,获得10
刚刚
刚刚
LZL发布了新的文献求助10
1秒前
1秒前
匆匆完成签到,获得积分10
1秒前
今后应助柯同采纳,获得10
2秒前
胡萝卜完成签到,获得积分10
2秒前
L_完成签到,获得积分10
2秒前
2秒前
CipherSage应助炙热晓露采纳,获得10
2秒前
2秒前
zzz发布了新的文献求助10
3秒前
就喝一口果汁完成签到,获得积分10
3秒前
时尚的哈密瓜完成签到,获得积分10
3秒前
alan完成签到 ,获得积分10
3秒前
周亭完成签到,获得积分10
4秒前
衬衫完成签到 ,获得积分10
4秒前
情怀应助任娜采纳,获得10
4秒前
5秒前
赘婿应助IAMXC采纳,获得10
5秒前
活ni的pig完成签到 ,获得积分10
5秒前
5秒前
我是老大应助xingxing采纳,获得10
5秒前
5秒前
5秒前
胡萝卜发布了新的文献求助10
5秒前
风的季节发布了新的文献求助10
6秒前
新八完成签到,获得积分10
7秒前
7秒前
DS完成签到 ,获得积分20
8秒前
8秒前
是猪毛啊完成签到,获得积分10
9秒前
9秒前
hs完成签到,获得积分10
9秒前
9秒前
醉书生发布了新的文献求助10
9秒前
奋斗发布了新的文献求助10
9秒前
Yimi刘博完成签到 ,获得积分10
9秒前
解雨欣发布了新的文献求助10
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143246
求助须知:如何正确求助?哪些是违规求助? 2794391
关于积分的说明 7811052
捐赠科研通 2450640
什么是DOI,文献DOI怎么找? 1303909
科研通“疑难数据库(出版商)”最低求助积分说明 627144
版权声明 601386