Joint Opposite Selection (JOS): A premiere joint of selective leading opposition and dynamic opposite enhanced Harris’ hawks optimization for solving single-objective problems

反对派(政治) 跳跃 计算机科学 人工智能 水准点(测量) 数学 数学优化 算法 地理 物理 法学 政治学 大地测量学 量子力学 政治
作者
Florentina Yuni Arini,Sirapat Chiewchanwattana,Chitsutha Soomlek,Khamron Sunat
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:188: 116001-116001 被引量:42
标识
DOI:10.1016/j.eswa.2021.116001
摘要

In this paper, we proposed Joint Opposite Selection (JOS) operator that is a joint of two opposition learning techniques: the Selective Leading Opposition (SLO) and the Dynamic Opposite (DO). SLO uses a linearly decreasing threshold value to determine the close distance dimension of the search agents. DO provides the search agents chances to expand their abilities in the search space. We applied JOS to the Harris Hawks Optimization (HHO), the performance is increased because JOS balances the capability of exploration phase by using SLO and exploitation phase by using DO. The new algorithm, named Harris' Hawks Optimization-Joint Opposite Selection (HHO-JOS), is also proposed in this research as an enhanced version of HHO to solve single-objective problems. When the hawks deploy JOS, SLO assists the hawks to succeed in exploitation phase by changing their close distance dimension and DO tries to diverse the search space range of the hawks in the exploration phase using a Random Jump Strategy (RJS). The sufficient Jumping rate (Jr) of DO in HHO-JOS is 0.25, according to our experimental results. The proposed algorithm was included in a competition conducted on 30 benchmark functions of CEC 2014 and 29 benchmark functions of CEC 2017. Both benchmarks contain collections of single-objective problems for real parameter numerical optimization. The problems were employed to evaluate and compare the proposed HHO-JOS to the original HHO, three variations of OBLs embedded in the original HHO, and 31 nature-inspired algorithms by using a scoring metric. The results of the competition showed that the premiere JOS on HHO consistently achieves robustness performance on CEC 2014 and CEC 2017. Comprehensive statistical analysis also demonstrated that HHO-JOS can compete with many leading optimization algorithms. Therefore, we can conclude that the proposed joint opposite selection is well-matched to HHO and succeeds in elevating HHO-JOS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
houjibofa发布了新的文献求助10
刚刚
田様应助幽默平安采纳,获得10
3秒前
可爱的函函应助刘小小123采纳,获得10
4秒前
瓣落的碎梦完成签到,获得积分0
6秒前
善学以致用应助momo采纳,获得10
7秒前
孝顺的觅风完成签到 ,获得积分10
7秒前
9秒前
刘小小123发布了新的文献求助10
12秒前
健壮的面包完成签到,获得积分10
12秒前
15秒前
孙燕应助科研界的恩希玛采纳,获得20
18秒前
19秒前
迷茫的一代完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
xingxingwang完成签到,获得积分10
22秒前
春来发布了新的文献求助30
23秒前
24秒前
24秒前
刘小小123完成签到,获得积分20
24秒前
xzy完成签到 ,获得积分10
25秒前
搜集达人应助无情向梦采纳,获得10
27秒前
阿伟1999发布了新的文献求助50
29秒前
momo发布了新的文献求助10
30秒前
li完成签到,获得积分10
31秒前
如此发布了新的文献求助10
33秒前
34秒前
赵静1234567890完成签到,获得积分10
34秒前
xxxllllll发布了新的文献求助10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
Owen应助科研通管家采纳,获得10
38秒前
乐乐应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
YamDaamCaa应助科研通管家采纳,获得50
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
科目三应助科研通管家采纳,获得10
39秒前
爆米花应助科研通管家采纳,获得10
39秒前
稳重淇完成签到 ,获得积分10
39秒前
39秒前
40秒前
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173