亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint Opposite Selection (JOS): A premiere joint of selective leading opposition and dynamic opposite enhanced Harris’ hawks optimization for solving single-objective problems

反对派(政治) 跳跃 计算机科学 人工智能 水准点(测量) 数学 数学优化 算法 地理 物理 法学 政治学 大地测量学 量子力学 政治
作者
Florentina Yuni Arini,Sirapat Chiewchanwattana,Chitsutha Soomlek,Khamron Sunat
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:188: 116001-116001 被引量:42
标识
DOI:10.1016/j.eswa.2021.116001
摘要

In this paper, we proposed Joint Opposite Selection (JOS) operator that is a joint of two opposition learning techniques: the Selective Leading Opposition (SLO) and the Dynamic Opposite (DO). SLO uses a linearly decreasing threshold value to determine the close distance dimension of the search agents. DO provides the search agents chances to expand their abilities in the search space. We applied JOS to the Harris Hawks Optimization (HHO), the performance is increased because JOS balances the capability of exploration phase by using SLO and exploitation phase by using DO. The new algorithm, named Harris' Hawks Optimization-Joint Opposite Selection (HHO-JOS), is also proposed in this research as an enhanced version of HHO to solve single-objective problems. When the hawks deploy JOS, SLO assists the hawks to succeed in exploitation phase by changing their close distance dimension and DO tries to diverse the search space range of the hawks in the exploration phase using a Random Jump Strategy (RJS). The sufficient Jumping rate (Jr) of DO in HHO-JOS is 0.25, according to our experimental results. The proposed algorithm was included in a competition conducted on 30 benchmark functions of CEC 2014 and 29 benchmark functions of CEC 2017. Both benchmarks contain collections of single-objective problems for real parameter numerical optimization. The problems were employed to evaluate and compare the proposed HHO-JOS to the original HHO, three variations of OBLs embedded in the original HHO, and 31 nature-inspired algorithms by using a scoring metric. The results of the competition showed that the premiere JOS on HHO consistently achieves robustness performance on CEC 2014 and CEC 2017. Comprehensive statistical analysis also demonstrated that HHO-JOS can compete with many leading optimization algorithms. Therefore, we can conclude that the proposed joint opposite selection is well-matched to HHO and succeeds in elevating HHO-JOS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zachary009完成签到 ,获得积分10
13秒前
潇洒冰蓝完成签到,获得积分10
23秒前
41秒前
1分钟前
11112321321完成签到 ,获得积分10
1分钟前
深情安青应助hl采纳,获得10
1分钟前
星辰大海应助块块采纳,获得10
1分钟前
1分钟前
1分钟前
hl发布了新的文献求助10
1分钟前
momo发布了新的文献求助10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
块块发布了新的文献求助10
1分钟前
1分钟前
谭代涛发布了新的文献求助10
1分钟前
2分钟前
块块发布了新的文献求助10
2分钟前
2分钟前
你是我的唯一完成签到 ,获得积分10
3分钟前
块块发布了新的文献求助10
3分钟前
小马甲应助cloe采纳,获得10
4分钟前
块块发布了新的文献求助10
4分钟前
5分钟前
5分钟前
搞怪的水彤完成签到 ,获得积分10
5分钟前
ding应助谭代涛采纳,获得10
5分钟前
5分钟前
5分钟前
谭代涛发布了新的文献求助10
5分钟前
默默善愁发布了新的文献求助10
5分钟前
6分钟前
cloe发布了新的文献求助10
6分钟前
神明完成签到 ,获得积分10
6分钟前
科研通AI6应助块块采纳,获得10
6分钟前
6分钟前
cloe完成签到,获得积分20
6分钟前
量子星尘发布了新的文献求助10
6分钟前
科研通AI2S应助谭代涛采纳,获得10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599843
求助须知:如何正确求助?哪些是违规求助? 4685587
关于积分的说明 14838670
捐赠科研通 4672013
什么是DOI,文献DOI怎么找? 2538317
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470946