湿地
土地覆盖
环境科学
自然地理学
温带气候
气候变化
归一化差异植被指数
土地利用
植被(病理学)
气候学
地理
生态学
医学
生物
地质学
病理
作者
Charlotte Gohr,Jeanette S. Blumröder,Douglas Sheil,Pierre L. Ibisch
标识
DOI:10.1016/j.ecoinf.2021.101442
摘要
As a result of ongoing climate change and more frequent heat events, the regulating services of land cover in terms of moderating and mitigating local temperatures are increasingly important. While the reduced temperatures found in forests and wetlands are recognized, their wider contribution to regional landscape cooling remains largely uncharacterized and unquantified. Herein, we propose and test a new method that estimates the temperature response and inertia of landscapes in high temperatures, based on land cover share. In order to achieve this goal, we combined the MODIS daytime land surface temperature (henceforth LST) time series and CORINE land cover data. We classified the time series in two ways, i.e. by stepwise temperature range (−10/−5 °C to +35/+40 °C) and by the occurrence of hot days (days with a mean LST ≥ 30 °C). As an explanatory variable, we developed and used a greenest pixel composite of the MODIS normalized difference vegetation index (NDVI) time series. In our study area, covering parts of northeastern Germany and western Poland, the fragmented landscape has heterogeneous temperature patterns, including urban heat islands, warm agricultural areas, cool forests and cold wetlands. We found that at high temperature ranges only forests and wetlands remained comparably cool, with LSTs up to 20.8 °C lower than the maximum LST in the study area. The analysis of land cover shares and LSTs revealed the substantial cooling effect of forests and wetlands in line with increasing land cover share in higher temperature ranges, as well as on hot days. The relation between LST and the NDVI indicated vegetation cover as the cause. We propose the corresponding metrics to quantify landscape-level temperature regulation. Equally, we advocate for management to identify these ecosystem services and their current and potential contributions, along with implications for sustaining and increasing, both tree cover and wetlands and thereby adapting landscapes to climate change.
科研通智能强力驱动
Strongly Powered by AbleSci AI