数学
极小极大
点估计
极大极小估计
贝叶斯定理
系列(地层学)
估计员
均方误差
应用数学
贝叶斯估计量
区间估计
置信区间
渐近分布
统计
数学优化
最小方差无偏估计量
贝叶斯概率
生物
古生物学
作者
Ngai Hang Chan,Wai Leong Ng,Chun Yip Yau,Haihan Yu
摘要
This paper establishes asymptotic theory for optimal estimation of change points in general time series models under α-mixing conditions. We show that the Bayes-type estimator is asymptotically minimax for change-point estimation under squared error loss. Two bootstrap procedures are developed to construct confidence intervals for the change points. An approximate limiting distribution of the change-point estimator under small change is also derived. Simulations and real data applications are presented to investigate the finite sample performance of the Bayes-type estimator and the bootstrap procedures.
科研通智能强力驱动
Strongly Powered by AbleSci AI