🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

A Thermally Actuated Microvalve for Smart Irrigation in Precision Agriculture Applications

精准农业 工艺工程 微流控 计算机科学 工程类 材料科学 农业 纳米技术 生态学 生物
作者
Alaba Bamido,Debjyoti Banerjee
标识
DOI:10.1115/fedsm2021-65899
摘要

Abstract A normally-open thermally-actuated microvalve was designed (using microfabrication/soft-lithography techniques involving 3D Printed molds), assembled and tested. The motivation of the research work is to develop an array of microvalves for precise delivery of water to individual plants in a field (with the goal of developing smart irrigation systems for high value cash-crops in the agricultural sector). It is currently impossible to control application of irrigation-water at the level of a single plant. If such a capability were practically available on farms, the result would be a step change in precision agriculture, such that the output of every plant in a farm field could be optimized (i.e., food-water-energy nexus in sustainability applications). The aim of this study is to develop and test a microfluidic system (consisting of a microvalve array) that could be controlled, capillary by capillary, to deliver the needed amount of water to individual plants in a large field. Two types of test fluids were leveraged for thermo-hydraulic actuation of the microvalves developed in this study: (a) Design-I: using air, and (b) Design-II: using Phase Change Material (PCM). The PCM used in this study is PureTemp29. The proposed approach enabled a simple and cheap design for microvalves that can be manufactured easily and are robust to weather conditions (e.g., when exposed to the elements in orchards and open fields). Other advantages include: safe and reliable operation; low power consumption; can tolerate anomalous pressure loads/fluctuations; simple actuation; affords easy control schemes; is amenable for remote control; provides long-term reliability (life-cycle duration estimated to be 3∼5 years); can be mass produced and is low maintenance (possibly requiring no maintenance over the life time of operation). The microvalve consists of two layers: a flow layer and a control layer. The control layer is heated from below and contains a microfluidic chamber with a flexible polymeric thin-membrane (200 microns in thickness) on top. The device is microfabricated from Poly-Di-Methyl-Siloxane (PDMS) using soft lithography techniques (using a 3D Printed mold). The control chamber contains either air (thermo-pneumatic actuation) or PCM (thermo-hydraulic actuation involving repeated melting/freezing of PCM). The flow layer contains the flow channel (inlet and outlet ports, horizontal section and valve seat). The experimental results from testing the efficacy of the two types of micro-valves show a 60% reduction (for thermo-pneumatic actuation using air) and 40% reduction (for thermo-hydraulic actuation using PCM) in water flow rates for similar actuation conditions (i.e., heater temperature values). PCM design is expected to consume less power (lower OPEX) for long-term actuation but may have slower actuation speed and have higher manufacturing costs (CAPEX). Air actuation design is expected to consume more power (higher OPEX) for longer-term operation but may have faster actuation speeds and lower manufacturing costs (CAPEX). Computational Fluid Dynamics (CFD) simulations were performed to investigate the effect of flowing water (in the microfluidic channel) on the average absolute pressure and temperature of air in the actuation chamber. The CFD simulations were performed using a commercial tool (Ansys™ 2019R1®). The results from the CFD simulations are presented in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3233129092关注了科研通微信公众号
刚刚
Slu发布了新的文献求助10
1秒前
xiaojinzi完成签到 ,获得积分10
1秒前
xiaowang完成签到 ,获得积分10
3秒前
子卿完成签到,获得积分0
3秒前
Chris完成签到,获得积分10
3秒前
呆萌代桃完成签到,获得积分10
4秒前
4秒前
灰太狼大王完成签到 ,获得积分10
4秒前
5秒前
5秒前
Upupuu完成签到,获得积分10
6秒前
端庄的雁易完成签到,获得积分20
6秒前
6秒前
小乐完成签到 ,获得积分10
6秒前
7秒前
zzz完成签到,获得积分10
7秒前
郭豪琪发布了新的文献求助10
7秒前
8秒前
花生王子完成签到 ,获得积分10
8秒前
9秒前
Yue发布了新的文献求助10
9秒前
bkagyin应助DJ采纳,获得10
10秒前
标致小翠发布了新的文献求助10
10秒前
11秒前
克姑美完成签到 ,获得积分10
11秒前
星宿完成签到,获得积分10
11秒前
12秒前
DaSheng发布了新的文献求助10
12秒前
隐形的巴豆完成签到,获得积分10
12秒前
zhang完成签到,获得积分10
13秒前
明理萃完成签到 ,获得积分10
13秒前
夏天再见完成签到,获得积分10
13秒前
靓丽行天完成签到,获得积分10
13秒前
wyw123发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
勤奋的花卷完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600665
求助须知:如何正确求助?哪些是违规求助? 3169539
关于积分的说明 9561671
捐赠科研通 2875871
什么是DOI,文献DOI怎么找? 1579097
邀请新用户注册赠送积分活动 742380
科研通“疑难数据库(出版商)”最低求助积分说明 725248