Evolutionary Dual-Ensemble Class Imbalance Learning for Human Activity Recognition

班级(哲学) 模式识别(心理学) 分类器(UML) 人工神经网络
作者
Yanqin Guo,Yaoqi Chu,Botao Jiao,Jian Cheng,Zekuan Yu,Ningren Cui,Lianbo Ma
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:6 (4): 728-739 被引量:14
标识
DOI:10.1109/tetci.2021.3079966
摘要

Human activity recognition is an imbalance classification problem in essence since various human actions may occur at different frequencies. Traditional ensemble class imbalance learning methods integrate resampling technique with multi-classifier models, which obtain better generalization than single ones. However, the number of base classifiers is often determined in advance, resulting in the redundant structure of a multi-classifier and larger computational cost. Moreover, various combinations of base classifiers may have similar recognition accuracy, forming a multimodel optimization problem. To address the issue, a dual-ensemble class imbalance learning method is presented, in which two ensemble learning models are nested each other. For each sub-dataset, three heterogeneous sub-classifiers compose of internal ensemble learning model, and the one with the highest recognition accuracy is selected as base classifier. In external ensemble learning model, an optimal combination that contains the smallest number of base classifiers and identifies human actions most exactly is found by multimodal evolutionary algorithms. Based on seven imbalanced activity datasets derived from localization data for person activity, statistical experimental results show that the proposed evolutionary dual-ensemble class imbalance learning method provides the simplest ensemble structure with the best accuracy for imbalanced data that outperforms other five widely-used ensemble classification methods on all metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滑蛋肉片完成签到,获得积分10
刚刚
苏苏苏发布了新的文献求助30
刚刚
wjzhan完成签到,获得积分10
1秒前
周小鱼发布了新的文献求助10
1秒前
魔幻的千青完成签到,获得积分20
2秒前
3秒前
3秒前
星辰大海应助zzf采纳,获得10
3秒前
4秒前
化尾鱼完成签到,获得积分10
4秒前
4秒前
李健应助俏皮的白柏采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
吉克完成签到,获得积分10
8秒前
韩鸽完成签到,获得积分10
8秒前
搜集达人应助Kris采纳,获得10
8秒前
10秒前
10秒前
石慧发布了新的文献求助10
10秒前
10秒前
慕南枝应助灵活的胖子wxp采纳,获得30
11秒前
11秒前
12秒前
斯文败类应助wangxiaobin采纳,获得10
12秒前
13秒前
13秒前
mdjsf完成签到,获得积分10
13秒前
万能图书馆应助苏苏苏采纳,获得10
15秒前
zshhay发布了新的文献求助10
16秒前
zzf发布了新的文献求助10
17秒前
隐形曼青应助xiaoiao采纳,获得10
17秒前
18秒前
渣渣完成签到,获得积分10
18秒前
18秒前
英姑应助hui采纳,获得10
18秒前
19秒前
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952648
求助须知:如何正确求助?哪些是违规求助? 3498110
关于积分的说明 11090445
捐赠科研通 3228721
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349