TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

计算机科学 分割 卷积神经网络 人工智能 推论 模式识别(心理学) 图像分割 增采样 深度学习 变压器 计算机视觉 图像(数学) 量子力学 物理 电压
作者
Yundong Zhang,Huiye Liu,Qiang Hu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 14-24 被引量:803
标识
DOI:10.1007/978-3-030-87193-2_2
摘要

Medical image segmentation - the prerequisite of numerous clinical needs - has been significantly prospered by recent advances in convolutional neural networks (CNNs). However, it exhibits general limitations on modeling explicit long-range relation, and existing cures, resorting to building deep encoders along with aggressive downsampling operations, leads to redundant deepened networks and loss of localized details. Hence, the segmentation task awaits a better solution to improve the efficiency of modeling global contexts while maintaining a strong grasp of low-level details. In this paper, we propose a novel parallel-in-branch architecture, TransFuse, to address this challenge. TransFuse combines Transformers and CNNs in a parallel style, where both global dependency and low-level spatial details can be efficiently captured in a much shallower manner. Besides, a novel fusion technique - BiFusion module is created to efficiently fuse the multi-level features from both branches. Extensive experiments demonstrate that TransFuse achieves the newest state-of-the-art results on both 2D and 3D medical image sets including polyp, skin lesion, hip, and prostate segmentation, with significant parameter decrease and inference speed improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气的海亦完成签到,获得积分10
刚刚
俭朴的孤风关注了科研通微信公众号
1秒前
1秒前
1秒前
SUNHAO发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
mahuahua完成签到,获得积分10
4秒前
4秒前
4秒前
Dank1ng发布了新的文献求助30
4秒前
情怀应助成就鸡翅采纳,获得10
5秒前
科目三应助Lws采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
StevenFong发布了新的文献求助10
6秒前
6秒前
stella完成签到,获得积分10
6秒前
朱罗娟发布了新的文献求助10
6秒前
6秒前
香蕉觅云应助chenjun7080采纳,获得10
6秒前
dll发布了新的文献求助10
7秒前
qingxinhuo完成签到 ,获得积分10
7秒前
7秒前
桐桐应助六元一斤虾采纳,获得10
8秒前
嘎嘎嘎发布了新的文献求助10
8秒前
威武的百褶裙完成签到,获得积分10
10秒前
11秒前
actor2006发布了新的文献求助10
11秒前
沉默的不言完成签到,获得积分10
11秒前
11秒前
NexusExplorer应助stella采纳,获得10
12秒前
小怡发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941676
求助须知:如何正确求助?哪些是违规求助? 4207590
关于积分的说明 13078573
捐赠科研通 3986551
什么是DOI,文献DOI怎么找? 2182617
邀请新用户注册赠送积分活动 1198256
关于科研通互助平台的介绍 1110551