Topological Structure and Semantic Information Transfer Network for Cross-Scene Hyperspectral Image Classification

计算机科学 判别式 人工智能 模式识别(心理学) 高光谱成像 拓扑(电路) 稳健性(进化) 图形 领域(数学分析) 卷积神经网络 算法 数据挖掘 理论计算机科学 数学 数学分析 化学 组合数学 基因 生物化学
作者
Yuxiang Zhang,Wei Li,Mengmeng Zhang,Ying Qu,Ran Tao,Hairong Qi
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 2817-2830 被引量:165
标识
DOI:10.1109/tnnls.2021.3109872
摘要

Domain adaptation techniques have been widely applied to the problem of cross-scene hyperspectral image (HSI) classification. Most existing methods use convolutional neural networks (CNNs) to extract statistical features from data and often neglect the potential topological structure information between different land cover classes. CNN-based approaches generally only model the local spatial relationships of the samples, which largely limits their ability to capture the nonlocal topological relationship that would better represent the underlying data structure of HSI. In order to make up for the above shortcomings, a Topological structure and Semantic information Transfer network (TSTnet) is developed. The method employs the graph structure to characterize topological relationships and the graph convolutional network (GCN) that is good at processing for cross-scene HSI classification. In the proposed TSTnet, graph optimal transmission (GOT) is used to align topological relationships to assist distribution alignment between the source domain and the target domain based on the maximum mean difference (MMD). Furthermore, subgraphs from the source domain and the target domain are dynamically constructed based on CNN features to take advantage of the discriminative capacity of CNN models that, in turn, improve the robustness of classification. In addition, to better characterize the correlation between distribution alignment and topological relationship alignment, a consistency constraint is enforced to integrate the output of CNN and GCN. Experimental results on three cross-scene HSI datasets demonstrate that the proposed TSTnet performs significantly better than some state-of-the-art domain-adaptive approaches. The codes will be available from the website: https://github.com/YuxiangZhang-BIT/IEEE_TNNLS_TSTnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wu完成签到,获得积分10
3秒前
科研通AI2S应助pyt采纳,获得10
3秒前
5秒前
季风气候完成签到 ,获得积分10
5秒前
研友_8KX15L完成签到,获得积分10
5秒前
moumou发布了新的文献求助10
6秒前
潇洒的诗桃完成签到,获得积分0
7秒前
Qiancheni完成签到,获得积分10
8秒前
10秒前
kilig完成签到,获得积分10
10秒前
11秒前
Star1983完成签到,获得积分10
16秒前
所所应助bread采纳,获得10
16秒前
Maywhat发布了新的文献求助10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
21秒前
8R60d8应助科研通管家采纳,获得20
21秒前
8R60d8应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
忆夏应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
21秒前
8R60d8应助科研通管家采纳,获得10
21秒前
21秒前
24秒前
卡哥完成签到,获得积分10
26秒前
optimist发布了新的文献求助10
27秒前
伊宝宝发布了新的文献求助10
28秒前
29秒前
完美世界应助温暖的弦采纳,获得10
29秒前
小二郎应助Cheryl采纳,获得10
31秒前
Maywhat完成签到,获得积分10
33秒前
冷漠的冰美式完成签到,获得积分10
33秒前
37秒前
王红玉完成签到,获得积分10
39秒前
41秒前
optimist完成签到,获得积分10
42秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212241
求助须知:如何正确求助?哪些是违规求助? 2861145
关于积分的说明 8127381
捐赠科研通 2527041
什么是DOI,文献DOI怎么找? 1360659
科研通“疑难数据库(出版商)”最低求助积分说明 643289
邀请新用户注册赠送积分活动 615635