Topological Structure and Semantic Information Transfer Network for Cross-Scene Hyperspectral Image Classification

计算机科学 判别式 人工智能 模式识别(心理学) 高光谱成像 拓扑(电路) 稳健性(进化) 图形 领域(数学分析) 卷积神经网络 算法 数据挖掘 理论计算机科学 数学 数学分析 化学 组合数学 基因 生物化学
作者
Yuxiang Zhang,Wei Li,Mengmeng Zhang,Ying Qu,Ran Tao,Hairong Qi
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 2817-2830 被引量:188
标识
DOI:10.1109/tnnls.2021.3109872
摘要

Domain adaptation techniques have been widely applied to the problem of cross-scene hyperspectral image (HSI) classification. Most existing methods use convolutional neural networks (CNNs) to extract statistical features from data and often neglect the potential topological structure information between different land cover classes. CNN-based approaches generally only model the local spatial relationships of the samples, which largely limits their ability to capture the nonlocal topological relationship that would better represent the underlying data structure of HSI. In order to make up for the above shortcomings, a Topological structure and Semantic information Transfer network (TSTnet) is developed. The method employs the graph structure to characterize topological relationships and the graph convolutional network (GCN) that is good at processing for cross-scene HSI classification. In the proposed TSTnet, graph optimal transmission (GOT) is used to align topological relationships to assist distribution alignment between the source domain and the target domain based on the maximum mean difference (MMD). Furthermore, subgraphs from the source domain and the target domain are dynamically constructed based on CNN features to take advantage of the discriminative capacity of CNN models that, in turn, improve the robustness of classification. In addition, to better characterize the correlation between distribution alignment and topological relationship alignment, a consistency constraint is enforced to integrate the output of CNN and GCN. Experimental results on three cross-scene HSI datasets demonstrate that the proposed TSTnet performs significantly better than some state-of-the-art domain-adaptive approaches. The codes will be available from the website: https://github.com/YuxiangZhang-BIT/IEEE_TNNLS_TSTnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
Lucas发布了新的文献求助20
1秒前
Do发布了新的文献求助10
2秒前
传奇3应助wananan采纳,获得10
3秒前
4秒前
可问春风完成签到,获得积分10
4秒前
4秒前
impala完成签到,获得积分10
4秒前
5秒前
Mississippiecho完成签到,获得积分10
5秒前
卜乌完成签到,获得积分10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
不懈奋进应助科研通管家采纳,获得30
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
希望天下0贩的0应助毛毛采纳,获得10
6秒前
蜘猪侠zx应助科研通管家采纳,获得10
6秒前
pluto应助毛毛采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
March应助毛毛采纳,获得10
6秒前
CAOHOU应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
李健的粉丝团团长应助HHHH采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
maomao完成签到,获得积分10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
chao发布了新的文献求助10
6秒前
6秒前
英姑应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
X欣应助科研通管家采纳,获得10
7秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016497
求助须知:如何正确求助?哪些是违规求助? 3556675
关于积分的说明 11322036
捐赠科研通 3289416
什么是DOI,文献DOI怎么找? 1812458
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812060