Deep Learning for Discrimination Between Fungal Keratitis and Bacterial Keratitis: DeepKeratitis.

角膜炎 真菌性角膜炎 医学 角膜溃疡 棘阿米巴角膜炎 眼科 纳他霉素 隐形眼镜 皮肤病科 微生物学
作者
Amit Kumar Ghosh,Ratchainant Thammasudjarit,Passara Jongkhajornpong,John Attia,Ammarin Thakkinstian
出处
期刊:Cornea [Ovid Technologies (Wolters Kluwer)]
被引量:2
标识
DOI:10.1097/ico.0000000000002830
摘要

PURPOSE Microbial keratitis is an urgent condition in ophthalmology that requires prompt treatment. This study aimed to apply deep learning algorithms for rapidly discriminating between fungal keratitis (FK) and bacterial keratitis (BK). METHODS A total of 2167 anterior segment images retrospectively acquired from 194 patients with 128 patients with BK (1388 images, 64.1%) and 66 patients with FK (779 images, 35.9%) were used to develop the model. The images were split into training, validation, and test sets. Three convolutional neural networks consisting of VGG19, ResNet50, and DenseNet121 were trained to classify images. Performance of each model was evaluated using precision (positive predictive value), sensitivity (recall), F1 score (test's accuracy), and area under the precision-recall curve (AUPRC). Ensemble learning was then applied to improve classification performance. RESULTS The classification performance in F1 score (95% confident interval) of VGG19, DenseNet121, and RestNet50 was 0.78 (0.72-0.84), 0.71 (0.64-0.78), and 0.68 (0.61-0.75), respectively. VGG19 also demonstrated the highest AUPRC of 0.86 followed by RestNet50 (0.73) and DenseNet (0.60). The ensemble learning could improve performance with the sensitivity and F1 score of 0.77 (0.81-0.83) and 0.83 (0.77-0.89) with an AUPRC of 0.904. CONCLUSIONS Convolutional neural network with ensemble learning showed the best performance in discriminating FK from BK compared with single architecture models. Our model can potentially be considered as an adjunctive tool for providing rapid provisional diagnosis in patients with microbial keratitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助hoojack采纳,获得10
刚刚
123发布了新的文献求助10
1秒前
2秒前
2秒前
liuliu发布了新的文献求助10
2秒前
诚心不凡发布了新的文献求助30
4秒前
4秒前
Alice发布了新的文献求助50
4秒前
搜集达人应助你比我笨采纳,获得10
6秒前
shuai发布了新的文献求助10
6秒前
一路硕博发布了新的文献求助10
6秒前
7秒前
如意千万发布了新的文献求助10
7秒前
炒饭发布了新的文献求助10
8秒前
岛err应助穿多点采纳,获得10
8秒前
9秒前
9秒前
BSDL发布了新的文献求助10
9秒前
kindong发布了新的文献求助10
10秒前
wwf完成签到,获得积分10
10秒前
yayaha完成签到,获得积分10
11秒前
11秒前
hoojack发布了新的文献求助10
12秒前
13秒前
ni发布了新的文献求助10
13秒前
乡乡发布了新的文献求助10
14秒前
木易完成签到 ,获得积分10
14秒前
大模型应助云上人采纳,获得10
15秒前
XY发布了新的文献求助10
15秒前
16秒前
18秒前
牦牛完成签到,获得积分10
18秒前
Wonder完成签到 ,获得积分10
18秒前
乐乐应助安好采纳,获得10
19秒前
Freya发布了新的文献求助10
19秒前
19秒前
19秒前
炒饭完成签到,获得积分10
19秒前
个性的紫菜应助如意大侠采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145621
求助须知:如何正确求助?哪些是违规求助? 2797097
关于积分的说明 7822848
捐赠科研通 2453435
什么是DOI,文献DOI怎么找? 1305652
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601469