Vectorized indoor surface reconstruction from 3D point cloud with multistep 2D optimization

点云 计算机科学 激光雷达 分割 平面布置图 3D城市模型 三维重建 马尔可夫随机场 计算机视觉 稳健性(进化) 人工智能 算法 图像分割 遥感 可视化 地质学 基因 生物化学 嵌入式系统 化学
作者
Jiali Han,Mengqi Rong,Hanqing Jiang,Hongmin Liu,Shuhan Shen
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:177: 57-74 被引量:37
标识
DOI:10.1016/j.isprsjprs.2021.04.019
摘要

Vectorized reconstruction from indoor point cloud has attracted increasing attention in recent years due to its high regularity and low memory consumption. Compared with aerial mapping of outdoor urban environments, indoor point cloud generated by LiDAR scanning or image-based 3D reconstruction usually contain more clutter and missing areas, which greatly increase the difficulty of vectorized reconstruction. In this paper, we propose an effective multistep pipeline to reconstruct vectorized models from indoor point cloud without the Manhattan or Atlanta world assumptions. The core idea behind our method is the combination of a sequence of 2D segment or cell assembly problems that are defined as global optimizations while reducing the reconstruction complexity and enhancing the robustness to different scenes. The proposed method includes a semantic segmentation stage and a reconstruction stage. First, we segment the permanent structures of indoor scenes, including ceilings, floors, walls and cylinders, from the input data, and then, we reconstruct these structures in sequence. The floorplan is first generated by detecting wall planes and selecting optimal subsets of projected wall segments with Integer Linear Programming (ILP), followed by constructing a 2D arrangement and recovering the ceiling and floor structures by Markov Random Filed (MRF) labeling on the arrangement. Finally, the wall structures are modeled by lifting each edge of the arrangement to a proper height by means of another global optimization. Merging the respective results yields the final model. The experimental results show that the proposed method could obtain accurate and compact vectorized models on both precise LiDAR data and defect-laden MVS data compared with other state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
IV完成签到,获得积分10
6秒前
akun完成签到,获得积分10
6秒前
pluto应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
张大宝发布了新的文献求助10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得200
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
bc应助科研通管家采纳,获得30
9秒前
老西瓜发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
CodeCraft应助神奇红桃三采纳,获得10
10秒前
13秒前
kingmin应助再睡一夏采纳,获得10
13秒前
Hello应助niuniu采纳,获得10
13秒前
prof.zhang完成签到,获得积分20
15秒前
16秒前
YYMnice发布了新的文献求助10
16秒前
小洪俊熙发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
酷波er应助超帅采纳,获得10
19秒前
QQ酱发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
月啦啦发布了新的文献求助10
21秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673700
求助须知:如何正确求助?哪些是违规求助? 3229193
关于积分的说明 9784567
捐赠科研通 2939761
什么是DOI,文献DOI怎么找? 1611313
邀请新用户注册赠送积分活动 760896
科研通“疑难数据库(出版商)”最低求助积分说明 736326