土壤盐分
盐水
盐度
灌溉
滴灌
环境科学
农学
干旱
水势
糖
土壤水分
浸出模型
水质
水文学(农业)
化学
土壤科学
生物
生态学
地质学
生物化学
岩土工程
作者
Dan Li,Shuqin Wan,Xiaobin Li,Yaohu Kang,Xiaoyu Han
标识
DOI:10.1016/j.agwat.2021.107347
摘要
Saline water irrigation can alleviate the deficiency of agricultural freshwater resources, especially in arid regions. However, saline water may lead to soil salinization and affect crop quality. A water-salt regulation (WSR) irrigation method has been developed to avoid soil salinization. To investigate the effect of saline water irrigation on crop quality while maintaining soil salinity balance, we conducted a field experiment on tomatoes under the WSR method in the arid region of northwest China from 2018 to 2019. Five treatments with electrical conductivity (ECi) of 0.5 dS/m, 3.1 dS/m, 4.7 dS/m, 6.2 dS/m, and 7.8 dS/m were designed, where ECi indicates salinities of irrigation water. We applied the WSR method for all five treatments to maintain the soil matric potential (SMP) above − 20 kPa at a depth of 20 cm below drip emitters. The results from three aspects (quality, yield, and soil salinity) are as follows: (i) Saline water irrigation can improve tomato quality, as evidenced by increasing the content of soluble solids, reducing sugar, organic acid, and vitamin C. When ECi ranged from 4.7 dS/m to 7.8 dS/m, the sugar-acid ratio was in the appropriate scope (7.4–9.8). (ii) The commercial yield and total yield declined by 4.8% and 4.4% as the ECi increased 1 dS/m. (iii) the soil salinity can be kept balanced under the WSR method after a 2-year experiment when the ECi of saline water did not exceed 4.7 dS/m. Therefore, in similar arid areas with a lack of freshwater resources, saline water of 4.7 dS/m under the WSR method can be used to irrigate field-grown tomatoes, compensating for the reduced yield by improving quality.
科研通智能强力驱动
Strongly Powered by AbleSci AI