Remote sensing image super-resolution and object detection: Benchmark and state of the art

计算机科学 水准点(测量) 目标检测 人工智能 对象(语法) 计算机视觉 特征(语言学) 失真(音乐) 图像分辨率 模式识别(心理学) 背景(考古学) 比例(比率) 遥感 地理 哲学 考古 地图学 放大器 语言学 带宽(计算) 计算机网络
作者
Yi Wang,Syed Muhammad Arsalan Bashir,Mahrukh Khan,Qudrat Ullah,Rui Wang,Yilin Song,Zhe Guo,Y. Niu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:197: 116793-116793 被引量:79
标识
DOI:10.1016/j.eswa.2022.116793
摘要

For the past two decades, there have been significant efforts to develop methods for object detection in Remote Sensing (RS) images. In most cases, the datasets for small object detection in remote sensing images are inadequate. Many researchers used scene classification datasets for object detection, which has its limitations; for example, the large-sized objects outnumber the small objects in object categories. Thus, they lack diversity; this further affects the detection performance of small object detectors in RS images. This paper reviews current datasets and object detection methods (deep learning-based) for remote sensing images. We also propose a large-scale, publicly available benchmark Remote Sensing Super-resolution Object Detection (RSSOD) dataset. The RSSOD dataset consists of 1,759 hand-annotated images with 22,091 instances of very high-resolution (VHR) images with a spatial resolution of ∼ 0.05 m. There are five classes with varying frequencies of labels per class; the images are annotated in You Only Look Once (YOLO) and Common Objects in Context (COCO) format. The image patches are extracted from satellite images, including real image distortions such as tangential scale distortion and skew distortion. The proposed RSSOD dataset will help researchers benchmark the state-of-the-art object detection methods across various classes, especially for small objects using image super-resolution. We also propose a novel Multi-class Cyclic super-resolution Generative adversarial network with Residual feature aggregation (MCGR) and auxiliary YOLOv5 detector to benchmark image super-resolution-based object detection and compare with the existing state-of-the-art methods based on image super-resolution (SR). The proposed MCGR achieved state-of-the-art performance for image SR with an improvement of 1.2 dB in peak signal-to-noise ratio (PSNR) compared to the current state-of-the-art non-local sparse network (NLSN). MCGR achieved best object detection mean average precisions (mAPs) of 0.758, 0.881, 0.841, and 0.983, respectively, for five-class, four-class, two-class, and single classes, respectively surpassing the performance of the state-of-the-art object detectors YOLOv5, EfficientDet, Faster RCNN, SSD, and RetinaNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助Karry19采纳,获得20
1秒前
1秒前
xingzou发布了新的文献求助10
1秒前
Sue完成签到,获得积分20
2秒前
2秒前
幸福大白发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
Uhnnn应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
Singularity应助科研通管家采纳,获得20
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
邓佳鑫Alan应助科研通管家采纳,获得10
4秒前
5秒前
邓佳鑫Alan应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
邓佳鑫Alan应助科研通管家采纳,获得10
5秒前
邓佳鑫Alan应助科研通管家采纳,获得10
5秒前
邓佳鑫Alan应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
萧驭枫应助科研通管家采纳,获得10
5秒前
5秒前
共享精神应助fff采纳,获得10
6秒前
活泼忆丹发布了新的文献求助10
6秒前
jimmyhui完成签到,获得积分10
7秒前
文静青烟发布了新的文献求助10
7秒前
8秒前
脑洞疼应助uuu采纳,获得10
9秒前
10秒前
彦希完成签到 ,获得积分10
10秒前
10秒前
10秒前
Singularity应助Alibizia采纳,获得30
11秒前
11秒前
幸福大白完成签到,获得积分10
11秒前
科研通AI2S应助我是你奶采纳,获得10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3132974
求助须知:如何正确求助?哪些是违规求助? 2784219
关于积分的说明 7765186
捐赠科研通 2439347
什么是DOI,文献DOI怎么找? 1296754
科研通“疑难数据库(出版商)”最低求助积分说明 624678
版权声明 600771