Remote sensing image super-resolution and object detection: Benchmark and state of the art

计算机科学 水准点(测量) 目标检测 人工智能 对象(语法) 计算机视觉 特征(语言学) 失真(音乐) 图像分辨率 模式识别(心理学) 背景(考古学) 比例(比率) 遥感 地理 哲学 考古 地图学 放大器 语言学 带宽(计算) 计算机网络
作者
Yi Wang,Syed Muhammad Arsalan Bashir,Mahrukh Khan,Qudrat Ullah,Rui Wang,Yilin Song,Zhe Guo,Y. Niu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:197: 116793-116793 被引量:79
标识
DOI:10.1016/j.eswa.2022.116793
摘要

For the past two decades, there have been significant efforts to develop methods for object detection in Remote Sensing (RS) images. In most cases, the datasets for small object detection in remote sensing images are inadequate. Many researchers used scene classification datasets for object detection, which has its limitations; for example, the large-sized objects outnumber the small objects in object categories. Thus, they lack diversity; this further affects the detection performance of small object detectors in RS images. This paper reviews current datasets and object detection methods (deep learning-based) for remote sensing images. We also propose a large-scale, publicly available benchmark Remote Sensing Super-resolution Object Detection (RSSOD) dataset. The RSSOD dataset consists of 1,759 hand-annotated images with 22,091 instances of very high-resolution (VHR) images with a spatial resolution of ∼ 0.05 m. There are five classes with varying frequencies of labels per class; the images are annotated in You Only Look Once (YOLO) and Common Objects in Context (COCO) format. The image patches are extracted from satellite images, including real image distortions such as tangential scale distortion and skew distortion. The proposed RSSOD dataset will help researchers benchmark the state-of-the-art object detection methods across various classes, especially for small objects using image super-resolution. We also propose a novel Multi-class Cyclic super-resolution Generative adversarial network with Residual feature aggregation (MCGR) and auxiliary YOLOv5 detector to benchmark image super-resolution-based object detection and compare with the existing state-of-the-art methods based on image super-resolution (SR). The proposed MCGR achieved state-of-the-art performance for image SR with an improvement of 1.2 dB in peak signal-to-noise ratio (PSNR) compared to the current state-of-the-art non-local sparse network (NLSN). MCGR achieved best object detection mean average precisions (mAPs) of 0.758, 0.881, 0.841, and 0.983, respectively, for five-class, four-class, two-class, and single classes, respectively surpassing the performance of the state-of-the-art object detectors YOLOv5, EfficientDet, Faster RCNN, SSD, and RetinaNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淇淇发布了新的文献求助20
刚刚
2秒前
彩虹大侠完成签到,获得积分10
3秒前
东方越彬发布了新的文献求助20
4秒前
bkagyin应助GGBond采纳,获得10
4秒前
4秒前
5秒前
6秒前
赘婿应助haku采纳,获得10
6秒前
wanci应助正方形圆采纳,获得10
6秒前
6秒前
7秒前
devin578632发布了新的文献求助10
8秒前
DimerV发布了新的文献求助10
9秒前
段启瑞发布了新的文献求助10
10秒前
943034197完成签到,获得积分10
10秒前
10秒前
令狐擎宇发布了新的文献求助10
10秒前
H123关注了科研通微信公众号
11秒前
12秒前
勤劳怜寒完成签到,获得积分10
13秒前
15秒前
婧婧发布了新的文献求助10
16秒前
monere发布了新的文献求助30
16秒前
Qing完成签到,获得积分10
16秒前
朴实以丹发布了新的文献求助30
17秒前
18秒前
18秒前
脑洞疼应助SSS木南采纳,获得10
18秒前
19秒前
领导范儿应助科研通管家采纳,获得10
20秒前
20秒前
Owen应助科研通管家采纳,获得30
20秒前
LEMONS应助科研通管家采纳,获得10
20秒前
荣耀发布了新的文献求助10
20秒前
柯一一应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得30
20秒前
20秒前
yx_cheng应助科研通管家采纳,获得20
20秒前
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962722
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142362
捐赠科研通 3241478
什么是DOI,文献DOI怎么找? 1791555
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517