Residual Attention Network-Based Confidence Estimation Algorithm for Non-Holonomic Constraint in GNSS/INS Integrated Navigation System

计算机科学 全球定位系统 协方差 卫星系统 完整的 噪音(视频) 传感器融合 算法 全球导航卫星系统应用 约束(计算机辅助设计) 实时计算 惯性导航系统 人工智能 卡尔曼滤波器 惯性测量装置 残余物 导航系统 工程类 数学 电信 图像(数学) 统计 方向(向量空间) 几何学 机械工程
作者
Yimin Xiao,Haiyong Luo,Fang Zhao,Fan Wu,Xile Gao,Qu Wang,Lizhen Cui
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:70 (11): 11404-11418 被引量:10
标识
DOI:10.1109/tvt.2021.3113500
摘要

Nowadays, the availability of accurate vehicle position becomes more and more indispensable. The GNSS/INS (Global Navigation Satellite Systems/Inertial Navigation System) is currently the most widely-used integrated navigation scheme for land vehicles, which is capable of provide high-accuracy and continuous positioning results in the open-sky environments. However, under the GNSS-denied conditions, the existing GNSS/INS integrated system often fails to provide reliable positioning results due to various and nonlinear errors contained in the MEMS (Micro-Electro-Mechanical System) IMU (Inertial Measurement Unit) measurements. To improve the positioning accuracy during GNSS outage, deep learning has been introduced into the GNSS/INS integrated system in recent years. In this paper, we propose a residual attention network-based confidence (i.e., measurement noise covariance) estimation algorithm for non-holonomic constraint in GNSS/INS integrated navigation system, which adopts a residual attention network to dynamically estimate the noise covariance of the pseudo-observation (i.e., non-holonomic constraint) for optimal Kalman filtering (KF) fusion. To emphasize the more representative features with larger weights for accurate noise covariance estimation, we introduce an attention mechanism to automatically assign proper weights to the learned features according to their contributions. We evaluate our proposed method on three practical road datasets and compare it with other seven methods including the traditional KF, Pure INS, KF with three deep learning networks, K-means, and the Input-Delayed Neural Networks based method. Extensive experimental results demonstrate that our proposed RA-NHC bounds the errors associated with velocities and achieves reasonable accuracy improvement in position and velocity estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI5应助Newt采纳,获得10
2秒前
淡定完成签到,获得积分10
3秒前
文献高手发布了新的文献求助30
4秒前
sbc发布了新的文献求助10
5秒前
小蘑菇应助绿泡泡采纳,获得10
8秒前
GXJ发布了新的文献求助10
9秒前
浪客完成签到 ,获得积分10
11秒前
共享精神应助zyyin采纳,获得10
14秒前
肖治民发布了新的文献求助10
16秒前
16秒前
02ZT完成签到,获得积分10
16秒前
16秒前
17秒前
GXJ完成签到,获得积分20
17秒前
19秒前
20秒前
冬柳发布了新的文献求助10
22秒前
24秒前
逆行的百合完成签到,获得积分10
24秒前
小饭完成签到 ,获得积分10
27秒前
30秒前
pzh完成签到 ,获得积分10
30秒前
30秒前
30秒前
自觉绿草完成签到,获得积分10
32秒前
斯文败类应助小刘采纳,获得10
33秒前
孙燕应助黑色土豆采纳,获得200
33秒前
Zhaoyuemeng完成签到 ,获得积分10
33秒前
肖治民完成签到,获得积分10
35秒前
36秒前
tt发布了新的文献求助10
36秒前
一直向前发布了新的文献求助10
36秒前
jay完成签到,获得积分10
37秒前
和谐的孱完成签到,获得积分10
38秒前
39秒前
39秒前
40秒前
前行者完成签到,获得积分10
41秒前
小马甲应助111111zx111采纳,获得10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531914
关于积分的说明 11255516
捐赠科研通 3270597
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190