Research on Inversion Algorithm of Aerosol Extinction Coefficient Based on Elman Neural Network

气溶胶 反演(地质) 激光雷达 摩尔吸收率 人工神经网络 遥感 消光(光学矿物学) 反变换采样 算法 环境科学 计算机科学 气象学 人工智能 物理 地质学 光学 构造盆地 古生物学
作者
Qingqing Xie,Hu Zhao,Jiaqi Guo,Ze Qiao,Xirui Ma,Hailun Zhang,Bo Zhong,Fei Ding
标识
DOI:10.1109/iciea51954.2021.9516085
摘要

Lidar, as an active remote sensing detection instrument, has become a powerful tool for atmospheric aerosol detection research. The extinction coefficient could be inverted by the lidar equation. However, the traditional method required many assumptions and complicated calculations when inverting the aerosol extinction coefficient, which greatly limited the accuracy and efficiency of the inversion. In this article, a method for predicting the aerosol extinction coefficient using Elman neural network was proposed. The neural network model was continuously trained to directly predict the aerosol extinction coefficient from the lidar echo signal, which effectively improved the aerosol extinction of the coefficient inversion efficiency. The experimental results show that the method with high prediction accuracy and the prediction effect was improved. The wide application prospect and practical value were possessed by the method and it provided a new idea for the inversion of extinction coefficient.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助如何呢采纳,获得10
刚刚
MICO发布了新的文献求助10
刚刚
刚刚
May完成签到,获得积分10
刚刚
1a完成签到 ,获得积分10
1秒前
lx123发布了新的文献求助10
1秒前
隐形曼青应助Nick采纳,获得10
1秒前
猫一样的完成签到,获得积分10
1秒前
踏实的谷蕊完成签到,获得积分10
1秒前
大朋友发布了新的文献求助10
1秒前
orixero应助臭小子采纳,获得10
2秒前
2秒前
lixin发布了新的文献求助10
2秒前
杨杨完成签到,获得积分10
3秒前
lizhiqian2024发布了新的文献求助10
3秒前
Grayson关注了科研通微信公众号
4秒前
4秒前
给胸毛做spa完成签到,获得积分10
4秒前
好运爆彭完成签到,获得积分10
4秒前
4秒前
豆子完成签到,获得积分10
4秒前
Genetrix应助了一李采纳,获得20
5秒前
无花果应助伶俐如冰采纳,获得10
5秒前
骑着我的毛豆Y去战斗关注了科研通微信公众号
5秒前
Denmark发布了新的文献求助50
5秒前
路瑶瑶发布了新的文献求助10
5秒前
金角完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助科研大捞采纳,获得10
6秒前
6秒前
3080完成签到,获得积分10
6秒前
6秒前
碧蓝青梦发布了新的文献求助10
7秒前
顾矜应助JoaquinH采纳,获得10
8秒前
默默善愁发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
Gjjjjjjj完成签到,获得积分10
10秒前
彭于晏应助斯文初珍采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759534
求助须知:如何正确求助?哪些是违规求助? 5520722
关于积分的说明 15394460
捐赠科研通 4896615
什么是DOI,文献DOI怎么找? 2633799
邀请新用户注册赠送积分活动 1581879
关于科研通互助平台的介绍 1537300