Predicting Adverse Drug Reactions from Drug Functions by Binary Relevance Multi-label Classification and MLSMOTE

药品 二元分类 相关性(法律) 公共化学 计算机科学 药物不良反应 机器学习 班级(哲学) 人工智能 药物发现 数据挖掘 支持向量机 医学 药理学 计算生物学 生物信息学 生物 法学 政治学
作者
Pranab Jyoti Das,Jerry W. Sangma,Vipin Pal,Yogita Yogita
出处
期刊:Lecture notes in networks and systems 卷期号:: 165-173 被引量:7
标识
DOI:10.1007/978-3-030-86258-9_17
摘要

Adverse Drug Reaction (ADR) prediction is one of the important tasks in drug discovery. It helps in enhancing drug safety and reducing drug discovery costs and time. Most of the existing works have focused on ADR prediction using chemical and biological properties of drugs. However, the capability of drug functions in ADR prediction has not been explored yet. ADR prediction is a multi-label classification problem and it faces the issue of class imbalance. In the present work, a methodology has been proposed for predicting ADR from drug functions. It employs the binary relevance method along with five base classifiers namely DT, ETC, KNN, MLPNN, and RF for performing multi-label classification and MLSMOTE for addressing the issue of class imbalance. The data of drug functions and ADR has been extracted respectively from SIDER and PubChem databases and then drug functions are mapped to ADR based on drug ID. After mapping drug function with the ADR, the resulted dataset comprises 670 drugs described by their functions and 6123 ADR. The proposed methodology has been applied on this dataset. The performance of the proposed methodology has been found promising in terms of accuracy, hamming loss, precision, recall, f1 score and ROC-AUC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
8888拉发布了新的文献求助10
2秒前
悠悠发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
健壮的饼干完成签到,获得积分10
3秒前
研友_ZegMrL发布了新的文献求助10
4秒前
4秒前
Ai1412发布了新的文献求助10
4秒前
如沐风完成签到,获得积分10
5秒前
5秒前
Crazykk完成签到,获得积分10
5秒前
nianxunxi完成签到,获得积分10
6秒前
Tindra发布了新的文献求助10
6秒前
LewisAcid应助小河采纳,获得20
7秒前
chenhui完成签到,获得积分10
7秒前
7秒前
7秒前
乐乐应助清风采纳,获得10
7秒前
蜘蛛发布了新的文献求助10
7秒前
如沐风发布了新的文献求助10
7秒前
深情安青应助大道采纳,获得10
8秒前
积极寻梅发布了新的文献求助10
8秒前
bkagyin应助先点菜吧采纳,获得10
9秒前
9秒前
9秒前
9秒前
376完成签到 ,获得积分10
9秒前
9秒前
gawga完成签到,获得积分10
10秒前
10秒前
松奈子完成签到 ,获得积分10
10秒前
飘逸的雪碧完成签到,获得积分10
12秒前
小马甲应助Boss东采纳,获得10
12秒前
12秒前
嘻嘻嘻哈完成签到 ,获得积分10
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587292
求助须知:如何正确求助?哪些是违规求助? 4670431
关于积分的说明 14782816
捐赠科研通 4622441
什么是DOI,文献DOI怎么找? 2531237
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066