Using machine learning to investigate the public’s emotional responses to work from home during the COVID-19 pandemic.

2019年冠状病毒病(COVID-19) 大流行 心理学 工作(物理) 2019-20冠状病毒爆发 社会心理学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 病毒学 医学 机械工程 爆发 工程类 病理 传染病(医学专业) 疾病
作者
Hanyi Min,Yisheng Peng,Mindy K. Shoss,Baojiang Yang
出处
期刊:Journal of Applied Psychology [American Psychological Association]
卷期号:106 (2): 214-229 被引量:60
标识
DOI:10.1037/apl0000886
摘要

According to event system theory (EST; Morgeson et al., Academy of Management Review, 40, 2015, 515-537), the coronavirus disease 2019 (COVID-19) pandemic and resultant stay-at-home orders are novel, critical, and disruptive events at the environmental level that substantially changed people's work, for example, where they work and how they interact with colleagues. Although many studies have examined events' impact on features or behaviors, few studies have examined how events impact aggregate emotions and how these effects may unfold over time. Applying a state-of-the-art deep learning technique (i.e., the fine-tuned Bidirectional Encoder Representations from Transformers [BERT] algorithm), the current study extracted the public's daily emotion associated with working from home (WFH) at the U.S. state level over four months (March 01, 2020-July 01, 2020) from 1.56 million tweets. We then applied discontinuous growth modeling (DGM) to investigate how COVID-19 and resultant stay-at-home orders changed the trajectories of the public's emotions associated with WFH. Our results indicated that stay-at-home orders demonstrated both immediate (i.e., intercept change) and longitudinal (i.e., slope change) effects on the public's emotion trajectories. Daily new COVID-19 case counts did not significantly change the emotion trajectories. We discuss theoretical implications for testing EST with the global pandemic and practical implications. We also make Python and R codes for fine-tuning BERT models and DGM analyses open source so that future researchers can adapt and apply the codes in their own studies. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
piers发布了新的文献求助10
刚刚
刚刚
刚刚
星辰大海应助jyyg采纳,获得10
刚刚
1秒前
李健应助xmhxpz采纳,获得10
1秒前
qiaobaqiao完成签到 ,获得积分10
1秒前
研友_gnv61n完成签到,获得积分0
2秒前
林祥胜发布了新的文献求助10
2秒前
2秒前
2秒前
苏汝帆发布了新的文献求助10
2秒前
胡江发布了新的文献求助10
2秒前
腿腿发布了新的文献求助10
2秒前
我要留学应助粥游天下采纳,获得20
3秒前
w123完成签到,获得积分10
4秒前
气敏侠完成签到,获得积分10
4秒前
久旱逢甘霖完成签到 ,获得积分10
4秒前
彭于晏应助xiaoran采纳,获得10
5秒前
adq完成签到,获得积分10
5秒前
小小K发布了新的文献求助10
5秒前
Ben发布了新的文献求助10
5秒前
Dream_fai完成签到,获得积分10
5秒前
果果发布了新的文献求助10
5秒前
英俊的铭应助淡定采纳,获得30
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
浮游应助细心小鸭子采纳,获得10
6秒前
飞快的从丹完成签到,获得积分10
6秒前
7秒前
科研通AI2S应助Ztx采纳,获得10
7秒前
小林野发布了新的文献求助10
8秒前
怕黑的凌柏完成签到,获得积分10
8秒前
虚影发布了新的文献求助10
8秒前
8秒前
9秒前
CROWN完成签到,获得积分10
9秒前
9秒前
田様应助piers采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426