Using machine learning to investigate the public’s emotional responses to work from home during the COVID-19 pandemic.

2019年冠状病毒病(COVID-19) 大流行 心理学 工作(物理) 2019-20冠状病毒爆发 社会心理学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 病毒学 医学 机械工程 爆发 工程类 病理 传染病(医学专业) 疾病
作者
Hanyi Min,Yisheng Peng,Mindy K. Shoss,Baojiang Yang
出处
期刊:Journal of Applied Psychology [American Psychological Association]
卷期号:106 (2): 214-229 被引量:63
标识
DOI:10.1037/apl0000886
摘要

According to event system theory (EST; Morgeson et al., Academy of Management Review, 40, 2015, 515-537), the coronavirus disease 2019 (COVID-19) pandemic and resultant stay-at-home orders are novel, critical, and disruptive events at the environmental level that substantially changed people's work, for example, where they work and how they interact with colleagues. Although many studies have examined events' impact on features or behaviors, few studies have examined how events impact aggregate emotions and how these effects may unfold over time. Applying a state-of-the-art deep learning technique (i.e., the fine-tuned Bidirectional Encoder Representations from Transformers [BERT] algorithm), the current study extracted the public's daily emotion associated with working from home (WFH) at the U.S. state level over four months (March 01, 2020-July 01, 2020) from 1.56 million tweets. We then applied discontinuous growth modeling (DGM) to investigate how COVID-19 and resultant stay-at-home orders changed the trajectories of the public's emotions associated with WFH. Our results indicated that stay-at-home orders demonstrated both immediate (i.e., intercept change) and longitudinal (i.e., slope change) effects on the public's emotion trajectories. Daily new COVID-19 case counts did not significantly change the emotion trajectories. We discuss theoretical implications for testing EST with the global pandemic and practical implications. We also make Python and R codes for fine-tuning BERT models and DGM analyses open source so that future researchers can adapt and apply the codes in their own studies. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jacinth完成签到,获得积分10
1秒前
小鱼僧完成签到 ,获得积分10
2秒前
hhhan发布了新的文献求助10
2秒前
2秒前
cnz完成签到,获得积分10
2秒前
5135352发布了新的文献求助10
3秒前
善学以致用应助畅快盼望采纳,获得10
3秒前
3秒前
蛋黄啵啵完成签到,获得积分10
6秒前
CipherSage应助归未采纳,获得10
7秒前
Zh发布了新的文献求助10
7秒前
Yziii应助飘落采纳,获得10
8秒前
9秒前
蝴蝶洁完成签到 ,获得积分10
10秒前
10秒前
就拒绝内耗完成签到,获得积分10
10秒前
10秒前
10秒前
晏紫苏发布了新的文献求助10
11秒前
15秒前
15秒前
漂亮幻莲发布了新的文献求助10
16秒前
小蘑菇应助ncjdoi采纳,获得10
16秒前
16秒前
buerger发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
琉璃苣发布了新的文献求助10
20秒前
20秒前
11122发布了新的文献求助10
21秒前
Xue关闭了Xue文献求助
21秒前
雷德露丝发布了新的文献求助10
22秒前
lhy12345完成签到,获得积分10
22秒前
大个应助stronging采纳,获得10
23秒前
LZH完成签到 ,获得积分10
23秒前
hhhan完成签到,获得积分10
23秒前
23秒前
缓慢新梅发布了新的文献求助10
23秒前
迷路海蓝应助宜苏采纳,获得20
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135677
求助须知:如何正确求助?哪些是违规求助? 2786507
关于积分的说明 7777976
捐赠科研通 2442633
什么是DOI,文献DOI怎么找? 1298612
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600847