Using machine learning to investigate the public’s emotional responses to work from home during the COVID-19 pandemic.

2019年冠状病毒病(COVID-19) 大流行 心理学 工作(物理) 2019-20冠状病毒爆发 社会心理学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 病毒学 医学 机械工程 爆发 工程类 病理 传染病(医学专业) 疾病
作者
Hanyi Min,Yisheng Peng,Mindy K. Shoss,Baojiang Yang
出处
期刊:Journal of Applied Psychology [American Psychological Association]
卷期号:106 (2): 214-229 被引量:60
标识
DOI:10.1037/apl0000886
摘要

According to event system theory (EST; Morgeson et al., Academy of Management Review, 40, 2015, 515-537), the coronavirus disease 2019 (COVID-19) pandemic and resultant stay-at-home orders are novel, critical, and disruptive events at the environmental level that substantially changed people's work, for example, where they work and how they interact with colleagues. Although many studies have examined events' impact on features or behaviors, few studies have examined how events impact aggregate emotions and how these effects may unfold over time. Applying a state-of-the-art deep learning technique (i.e., the fine-tuned Bidirectional Encoder Representations from Transformers [BERT] algorithm), the current study extracted the public's daily emotion associated with working from home (WFH) at the U.S. state level over four months (March 01, 2020-July 01, 2020) from 1.56 million tweets. We then applied discontinuous growth modeling (DGM) to investigate how COVID-19 and resultant stay-at-home orders changed the trajectories of the public's emotions associated with WFH. Our results indicated that stay-at-home orders demonstrated both immediate (i.e., intercept change) and longitudinal (i.e., slope change) effects on the public's emotion trajectories. Daily new COVID-19 case counts did not significantly change the emotion trajectories. We discuss theoretical implications for testing EST with the global pandemic and practical implications. We also make Python and R codes for fine-tuning BERT models and DGM analyses open source so that future researchers can adapt and apply the codes in their own studies. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助默默采纳,获得10
1秒前
充电宝应助Peng采纳,获得10
2秒前
万能图书馆应助SC234采纳,获得10
2秒前
hongge007发布了新的文献求助10
2秒前
Luna_aaa应助盛夏如花采纳,获得10
2秒前
Owen应助喜欢猫采纳,获得10
3秒前
达尔文关注了科研通微信公众号
3秒前
3秒前
欣喜的绝山完成签到,获得积分10
3秒前
FashionBoy应助被窝哲学家采纳,获得10
3秒前
4秒前
yznfly应助Rico采纳,获得30
5秒前
WangYF2025完成签到 ,获得积分10
6秒前
6秒前
dd完成签到,获得积分20
7秒前
下次一定发布了新的文献求助10
7秒前
7秒前
小李发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
热情的远锋完成签到 ,获得积分10
11秒前
11秒前
12秒前
13秒前
Hello应助西瓜刀采纳,获得10
14秒前
达尔文发布了新的文献求助10
15秒前
YaoJason完成签到 ,获得积分10
16秒前
落后的彩虹完成签到 ,获得积分10
16秒前
17秒前
18秒前
佟韩发布了新的文献求助10
18秒前
gemini0615发布了新的文献求助10
18秒前
18秒前
18秒前
Dean应助Dong采纳,获得50
19秒前
隐形曼青应助TALE采纳,获得10
20秒前
zachary完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690