Using machine learning to investigate the public’s emotional responses to work from home during the COVID-19 pandemic.

2019年冠状病毒病(COVID-19) 大流行 心理学 工作(物理) 2019-20冠状病毒爆发 社会心理学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 病毒学 医学 机械工程 爆发 工程类 病理 传染病(医学专业) 疾病
作者
Hanyi Min,Yisheng Peng,Mindy K. Shoss,Baojiang Yang
出处
期刊:Journal of Applied Psychology [American Psychological Association]
卷期号:106 (2): 214-229 被引量:60
标识
DOI:10.1037/apl0000886
摘要

According to event system theory (EST; Morgeson et al., Academy of Management Review, 40, 2015, 515-537), the coronavirus disease 2019 (COVID-19) pandemic and resultant stay-at-home orders are novel, critical, and disruptive events at the environmental level that substantially changed people's work, for example, where they work and how they interact with colleagues. Although many studies have examined events' impact on features or behaviors, few studies have examined how events impact aggregate emotions and how these effects may unfold over time. Applying a state-of-the-art deep learning technique (i.e., the fine-tuned Bidirectional Encoder Representations from Transformers [BERT] algorithm), the current study extracted the public's daily emotion associated with working from home (WFH) at the U.S. state level over four months (March 01, 2020-July 01, 2020) from 1.56 million tweets. We then applied discontinuous growth modeling (DGM) to investigate how COVID-19 and resultant stay-at-home orders changed the trajectories of the public's emotions associated with WFH. Our results indicated that stay-at-home orders demonstrated both immediate (i.e., intercept change) and longitudinal (i.e., slope change) effects on the public's emotion trajectories. Daily new COVID-19 case counts did not significantly change the emotion trajectories. We discuss theoretical implications for testing EST with the global pandemic and practical implications. We also make Python and R codes for fine-tuning BERT models and DGM analyses open source so that future researchers can adapt and apply the codes in their own studies. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ynn发布了新的文献求助10
4秒前
科研专家完成签到 ,获得积分10
6秒前
NexusExplorer应助湖以采纳,获得10
7秒前
SciGPT应助琪琪子采纳,获得10
7秒前
SXYYXS完成签到 ,获得积分10
10秒前
luafu完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
脾气暴躁的小兔完成签到,获得积分10
17秒前
Hu完成签到 ,获得积分20
22秒前
Ava应助晓晓马儿采纳,获得10
23秒前
渝州人完成签到,获得积分10
24秒前
25秒前
26秒前
26秒前
27秒前
汉堡包应助alpv采纳,获得10
28秒前
29秒前
咪咪完成签到,获得积分20
29秒前
方俊驰发布了新的文献求助10
29秒前
liyang999发布了新的文献求助30
29秒前
30秒前
31秒前
31秒前
31秒前
慕青应助潇洒的语蝶采纳,获得10
31秒前
一棵狗芽发布了新的文献求助10
32秒前
方俊驰完成签到,获得积分10
34秒前
科研通AI5应助衫青采纳,获得10
35秒前
35秒前
常冬寒发布了新的文献求助10
36秒前
36秒前
37秒前
asdfqwer应助xhzhao86采纳,获得10
38秒前
39秒前
samantha完成签到 ,获得积分10
40秒前
42秒前
方方完成签到,获得积分10
42秒前
eddy发布了新的文献求助10
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734464
求助须知:如何正确求助?哪些是违规求助? 3278459
关于积分的说明 10009515
捐赠科研通 2995045
什么是DOI,文献DOI怎么找? 1643172
邀请新用户注册赠送积分活动 780986
科研通“疑难数据库(出版商)”最低求助积分说明 749183