Using machine learning to investigate the public’s emotional responses to work from home during the COVID-19 pandemic.

2019年冠状病毒病(COVID-19) 大流行 心理学 工作(物理) 2019-20冠状病毒爆发 社会心理学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 病毒学 医学 机械工程 爆发 工程类 病理 传染病(医学专业) 疾病
作者
Hanyi Min,Yisheng Peng,Mindy K. Shoss,Baojiang Yang
出处
期刊:Journal of Applied Psychology [American Psychological Association]
卷期号:106 (2): 214-229 被引量:60
标识
DOI:10.1037/apl0000886
摘要

According to event system theory (EST; Morgeson et al., Academy of Management Review, 40, 2015, 515-537), the coronavirus disease 2019 (COVID-19) pandemic and resultant stay-at-home orders are novel, critical, and disruptive events at the environmental level that substantially changed people's work, for example, where they work and how they interact with colleagues. Although many studies have examined events' impact on features or behaviors, few studies have examined how events impact aggregate emotions and how these effects may unfold over time. Applying a state-of-the-art deep learning technique (i.e., the fine-tuned Bidirectional Encoder Representations from Transformers [BERT] algorithm), the current study extracted the public's daily emotion associated with working from home (WFH) at the U.S. state level over four months (March 01, 2020-July 01, 2020) from 1.56 million tweets. We then applied discontinuous growth modeling (DGM) to investigate how COVID-19 and resultant stay-at-home orders changed the trajectories of the public's emotions associated with WFH. Our results indicated that stay-at-home orders demonstrated both immediate (i.e., intercept change) and longitudinal (i.e., slope change) effects on the public's emotion trajectories. Daily new COVID-19 case counts did not significantly change the emotion trajectories. We discuss theoretical implications for testing EST with the global pandemic and practical implications. We also make Python and R codes for fine-tuning BERT models and DGM analyses open source so that future researchers can adapt and apply the codes in their own studies. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChiHiRo9Q完成签到,获得积分10
1秒前
ED应助元气少女岳云鹏采纳,获得10
1秒前
tsuki完成签到,获得积分10
3秒前
凳子3333发布了新的文献求助10
3秒前
swaggy完成签到 ,获得积分10
3秒前
叶95发布了新的文献求助10
4秒前
越战越勇发布了新的文献求助10
6秒前
6秒前
铠甲勇士完成签到,获得积分10
6秒前
善学以致用应助STAN采纳,获得20
7秒前
元气少女岳云鹏完成签到,获得积分10
7秒前
8秒前
领导范儿应助Qiqinnn采纳,获得10
9秒前
笨笨翰发布了新的文献求助10
10秒前
123完成签到,获得积分10
10秒前
11秒前
yk发布了新的文献求助10
13秒前
djiwisksk66应助886采纳,获得10
13秒前
712完成签到,获得积分10
14秒前
杳鸢应助zhang采纳,获得10
14秒前
CodeCraft应助越战越勇采纳,获得10
14秒前
搞怪人杰完成签到,获得积分10
14秒前
juzipi完成签到,获得积分10
14秒前
wyy应助科研通管家采纳,获得50
15秒前
我是老大应助科研通管家采纳,获得10
16秒前
16秒前
烟花应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得200
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
yx_cheng应助科研通管家采纳,获得10
17秒前
17秒前
jellyfish完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993