PathologyGAN: Learning deep representations of cancer tissue

人工智能 癌症 乳腺癌 计算机科学 结直肠癌 深度学习 间质细胞 模式识别(心理学) 机器学习 医学 病理 计算生物学 生物 内科学
作者
Adalberto Claudio Quiros,Roderick Murray-Smith,Ke Yuan
标识
DOI:10.59275/j.melba.2021-gfgg
摘要

Histopathological images of tumours contain abundant information about how tumours grow and how they interact with their micro-environment. Better understanding of tissue phenotypes in these images could reveal novel determinants of pathological processes underlying cancer, and in turn improve diagnosis and treatment options. Advances of Deep learning makes it ideal to achieve those goals, however, its application is limited by the cost of high quality labels from patients data. Unsupervised learning, in particular, deep generative models with representation learning properties provides an alternative path to further understand cancer tissue phenotypes, capturing tissue morphologies. In this paper, we develop a framework which allows Generative Adversarial Networks (GANs) to capture key tissue features and uses these characteristics to give structure to its latent space. To this end, we trained our model on two different datasets, an H&E colorectal cancer tissue from the National Center for Tumor diseases (NCT, Germany) and an H&E breast cancer tissue from the Netherlands Cancer Institute (NKI, Netherlands) and Vancouver General Hospital (VGH, Canada). Composed of 86 slide images and 576 tissue micro-arrays (TMAs) respectively. We show that our model generates high quality images, with a Frechet Inception Distance (FID) of 16.65 (breast cancer) and 32.05 (colorectal cancer). We further assess the quality of the images with cancer tissue characteristics (e.g. count of cancer, lymphocytes, or stromal cells), using quantitative information to calculate the FID and showing consistent performance of 9.86. Additionally, the latent space of our model shows an interpretable structure and allows semantic vector operations that translate into tissue feature transformations. Furthermore, ratings from two expert pathologists found no significant difference between our generated tissue images from real ones. The code, generated images, and pretrained model are available at https://github.com/AdalbertoCq/Pathology-GAN
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangyangyang发布了新的文献求助10
刚刚
李爱国应助幸福寒梅采纳,获得10
刚刚
认真勒完成签到 ,获得积分10
1秒前
科研土人完成签到,获得积分10
2秒前
ovc发布了新的文献求助10
2秒前
2秒前
2秒前
大意的悟空完成签到 ,获得积分10
2秒前
2秒前
王妞妞发布了新的文献求助20
3秒前
prosperp应助坚强的笑天采纳,获得10
3秒前
3秒前
发酱发布了新的文献求助10
5秒前
5秒前
九重天发布了新的文献求助30
5秒前
yujd发布了新的文献求助20
6秒前
6秒前
Cassidy完成签到,获得积分10
6秒前
隐形曼青应助京阿尼采纳,获得10
6秒前
7秒前
星辰大海应助许自通采纳,获得10
7秒前
Zhi_S发布了新的文献求助10
7秒前
8秒前
欢呼的蝉发布了新的文献求助10
8秒前
小项完成签到,获得积分10
8秒前
Rexy发布了新的文献求助10
8秒前
Owen应助foxp3采纳,获得10
9秒前
9秒前
panda发布了新的文献求助10
9秒前
9秒前
协和小飞龙完成签到,获得积分10
11秒前
11秒前
小欧文发布了新的文献求助10
12秒前
羊了个羊发布了新的文献求助30
12秒前
12秒前
12秒前
闾丘志泽发布了新的文献求助10
12秒前
史迪仔崽完成签到,获得积分10
13秒前
qisiyi666发布了新的文献求助10
13秒前
通天塔发布了新的文献求助10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467776
求助须知:如何正确求助?哪些是违规求助? 3060732
关于积分的说明 9073021
捐赠科研通 2751205
什么是DOI,文献DOI怎么找? 1509564
科研通“疑难数据库(出版商)”最低求助积分说明 697377
邀请新用户注册赠送积分活动 697315