Nanoprobe-Based Magnetic Resonance Imaging of Hypoxia Predicts Responses to Radiotherapy, Immunotherapy, and Sensitizing Treatments in Pancreatic Tumors

磁共振成像 纳米探针 胰腺癌 缺氧(环境) 免疫疗法 放射治疗 神经内分泌肿瘤 医学 癌症研究 肿瘤缺氧 免疫系统 免疫检查点 肿瘤科 内科学 放射科 癌症 免疫学 化学 有机化学 氧气 物理 荧光 量子力学
作者
Jing Liu,Horacio Cabral,Bin Song,Ichio Aoki,Zhouyun Chen,Nobuhiro Nishiyama,Yuan Huang,Kazunori Kataoka,Peng Mi
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (8): 13526-13538 被引量:48
标识
DOI:10.1021/acsnano.1c04263
摘要

Accurate diagnosis of tumors and predicting the therapeutic responses are highly demanded in the clinic to improve the treatment efficacy and survival rates. Since hypoxia develops in the progression of tumors and inversely correlates with prognosis and promotes resistance to radiotherapies and immunotherapies, it is a potential marker for therapeutic prediction. Therefore, effective discrimination of tumor hypoxia for predicting therapeutic outcomes is critical. Here, a magnetic resonance imaging (MRI)-based diagnosis strategy using contrast-amplifying nanoprobes that sense tumor acidosis and real-time observation of hypoxic conditions in tumors has been developed, aiming at accurate detection of pancreatic tumors and prediction of therapeutic effects. Our approach selectively probed xenograft, allograft, and transgenic spontaneous models of intractable pancreatic cancer, which lacks standardized predictive markers to identify patients who benefit most from treatments, and effectively discriminated the intratumoral hypoxia levels. By stratification of pancreatic tumors based on quantitative MR imaging of hypoxia, it enabled prediction of the responses to radiotherapy and immune checkpoint inhibitors. Moreover, the nanoprobe-based MRI could monitor hypoxia reduction by tumor normalization treatments, which permits visualizing pancreatic tumors that will respond to immune checkpoint blockade therapy, enhancing the response rate. The results demonstrate the potential of our strategy for accurate tumor diagnosis, patient stratification, and effective therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
4秒前
wewe完成签到,获得积分20
5秒前
李大爷发布了新的文献求助10
5秒前
Kevin完成签到,获得积分10
7秒前
酷炫的尔丝完成签到 ,获得积分10
7秒前
Hello应助标致的蛋挞采纳,获得50
8秒前
大个应助明亮的宁采纳,获得10
9秒前
Rainbow发布了新的文献求助10
9秒前
anyone发布了新的文献求助30
10秒前
充电宝应助SY采纳,获得10
11秒前
D先生完成签到,获得积分20
11秒前
yxt完成签到,获得积分10
11秒前
momo发布了新的文献求助10
12秒前
14秒前
苏照杭应助长度2到采纳,获得10
14秒前
15秒前
次我完成签到,获得积分10
15秒前
qisili关注了科研通微信公众号
16秒前
Owen应助李大爷采纳,获得10
17秒前
18秒前
脑洞疼应助迅速冰岚采纳,获得10
20秒前
NexusExplorer应助whoops采纳,获得10
20秒前
sweetbearm应助通~采纳,获得10
20秒前
VDC应助欢呼冰岚采纳,获得30
20秒前
Grayball应助hhl采纳,获得10
20秒前
充电宝应助次我采纳,获得10
21秒前
sgjj33发布了新的文献求助10
22秒前
墨墨完成签到,获得积分10
23秒前
蒸馏水完成签到,获得积分10
23秒前
123完成签到,获得积分10
23秒前
李大爷完成签到,获得积分10
24秒前
SY发布了新的文献求助10
24秒前
journey完成签到 ,获得积分10
28秒前
kaw发布了新的文献求助10
28秒前
彭于晏应助hdd采纳,获得10
31秒前
感性的寄真完成签到 ,获得积分10
31秒前
kaw完成签到,获得积分10
32秒前
anyone完成签到,获得积分10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851