一般化
生物圈
人工神经网络
平流
气候变化
工作(物理)
物理定律
地球系统科学
气候模式
计算机科学
偏微分方程
地球物理流体力学
环境科学
气象学
气候学
海洋学
地质学
人工智能
数学
物理
热力学
量子力学
数学分析
天文
作者
Taco de Wolff,Hugo Carrillo,Luis Martí,Nayat Sánchez-Pi
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot
日期:2021-05-07
被引量:8
摘要
The carbon pump of the world's oceans plays a vital role in the biosphere and climate of the earth, urging improved understanding of the functions and influences of the oceans for climate change analyses. State-of-the-art techniques are required to develop models that can capture the complexity of ocean currents and temperature flows. We will explore the benefits of using physics informed neural networks (PINNs) for solving partial differential equations related to ocean modeling; such as the wave, shallow water, and advection-diffusion equations. PINNs account for the deviation from physical laws in order to improve learning and generalization. However, in this work, we observe worse training and generalization results, possibly due the amount of data used in training.
科研通智能强力驱动
Strongly Powered by AbleSci AI