Gastrointestinal cancer classification and prognostication from histology using deep learning: Systematic review

医学 组织学 癌症 人工智能 病理 内科学 计算机科学
作者
Sara Kuntz,Eva Krieghoff‐Henning,Jakob Nikolas Kather,Tanja Jutzi,Julia Höhn,Lennard Kiehl,Achim Hekler,Elizabeth Alwers,Christof von Kalle,Stefan Fröhling,Jochen Utikal,Hermann Brenner,Michael Hoffmeister,Titus J. Brinker
出处
期刊:European Journal of Cancer [Elsevier BV]
卷期号:155: 200-215 被引量:131
标识
DOI:10.1016/j.ejca.2021.07.012
摘要

Gastrointestinal cancers account for approximately 20% of all cancer diagnoses and are responsible for 22.5% of cancer deaths worldwide. Artificial intelligence-based diagnostic support systems, in particular convolutional neural network (CNN)-based image analysis tools, have shown great potential in medical computer vision. In this systematic review, we summarise recent studies reporting CNN-based approaches for digital biomarkers for characterization and prognostication of gastrointestinal cancer pathology.Pubmed and Medline were screened for peer-reviewed papers dealing with CNN-based gastrointestinal cancer analyses from histological slides, published between 2015 and 2020.Seven hundred and ninety titles and abstracts were screened, and 58 full-text articles were assessed for eligibility.Sixteen publications fulfilled our inclusion criteria dealing with tumor or precursor lesion characterization or prognostic and predictive biomarkers: 14 studies on colorectal or rectal cancer, three studies on gastric cancer and none on esophageal cancer. These studies were categorised according to their end-points: polyp characterization, tumor characterization and patient outcome. Regarding the translation into clinical practice, we identified several studies demonstrating generalization of the classifier with external tests and comparisons with pathologists, but none presenting clinical implementation.Results of recent studies on CNN-based image analysis in gastrointestinal cancer pathology are promising, but studies were conducted in observational and retrospective settings. Large-scale trials are needed to assess performance and predict clinical usefulness. Furthermore, large-scale trials are required for approval of CNN-based prediction models as medical devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊水池完成签到 ,获得积分10
3秒前
csy完成签到,获得积分10
3秒前
感动煎饼发布了新的文献求助10
3秒前
勤恳友灵发布了新的文献求助10
3秒前
4秒前
4秒前
深情安青应助zhangscience采纳,获得10
4秒前
大伟完成签到,获得积分10
5秒前
你有事嘛发布了新的文献求助10
7秒前
8秒前
nino应助西西采纳,获得20
8秒前
8秒前
9秒前
L14ing完成签到,获得积分10
9秒前
10秒前
薛之谦发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
粱如波发布了新的文献求助10
15秒前
4652376完成签到 ,获得积分10
15秒前
将就发布了新的文献求助10
15秒前
星辰大海应助Ruiruirui采纳,获得10
15秒前
独特的初彤完成签到 ,获得积分10
16秒前
mkihvgik发布了新的文献求助30
16秒前
17秒前
18秒前
小宁由于求助违规,被管理员扣积分20
18秒前
结草衔环完成签到,获得积分10
18秒前
18秒前
OsActin完成签到,获得积分10
20秒前
20秒前
20秒前
研友_VZG7GZ应助krrr采纳,获得10
22秒前
杨文志关注了科研通微信公众号
22秒前
hxxx发布了新的文献求助10
22秒前
chenying发布了新的文献求助10
23秒前
23秒前
默默板凳完成签到,获得积分10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737910
求助须知:如何正确求助?哪些是违规求助? 3281470
关于积分的说明 10025533
捐赠科研通 2998170
什么是DOI,文献DOI怎么找? 1645135
邀请新用户注册赠送积分活动 782612
科研通“疑难数据库(出版商)”最低求助积分说明 749843