Gastrointestinal cancer classification and prognostication from histology using deep learning: Systematic review

医学 医学诊断 胃肠道癌 癌症 梅德林 结直肠癌 临床试验 精密医学 病理 内科学 政治学 法学
作者
Sara Kuntz,Eva Krieghoff-Henning,Jakob Nikolas Kather,Tanja B. Jutzi,Julia Höhn,Lennard Kiehl,Achim Hekler,Elizabeth Alwers,Christof von Kalle,Stefan Fröhling,Jochen Utikal,Hermann Brenner,Michael Hoffmeister,Titus J. Brinker
出处
期刊:European Journal of Cancer [Elsevier]
卷期号:155: 200-215 被引量:36
标识
DOI:10.1016/j.ejca.2021.07.012
摘要

Gastrointestinal cancers account for approximately 20% of all cancer diagnoses and are responsible for 22.5% of cancer deaths worldwide. Artificial intelligence-based diagnostic support systems, in particular convolutional neural network (CNN)-based image analysis tools, have shown great potential in medical computer vision. In this systematic review, we summarise recent studies reporting CNN-based approaches for digital biomarkers for characterization and prognostication of gastrointestinal cancer pathology.Pubmed and Medline were screened for peer-reviewed papers dealing with CNN-based gastrointestinal cancer analyses from histological slides, published between 2015 and 2020.Seven hundred and ninety titles and abstracts were screened, and 58 full-text articles were assessed for eligibility.Sixteen publications fulfilled our inclusion criteria dealing with tumor or precursor lesion characterization or prognostic and predictive biomarkers: 14 studies on colorectal or rectal cancer, three studies on gastric cancer and none on esophageal cancer. These studies were categorised according to their end-points: polyp characterization, tumor characterization and patient outcome. Regarding the translation into clinical practice, we identified several studies demonstrating generalization of the classifier with external tests and comparisons with pathologists, but none presenting clinical implementation.Results of recent studies on CNN-based image analysis in gastrointestinal cancer pathology are promising, but studies were conducted in observational and retrospective settings. Large-scale trials are needed to assess performance and predict clinical usefulness. Furthermore, large-scale trials are required for approval of CNN-based prediction models as medical devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助tzz已掉线采纳,获得10
刚刚
可靠尔冬发布了新的文献求助10
刚刚
刚刚
9羊发布了新的文献求助10
刚刚
刚刚
科研通AI2S应助执着的一笑采纳,获得10
刚刚
谨慎凡桃发布了新的文献求助30
刚刚
科目三应助Juyi采纳,获得10
1秒前
1秒前
我是老大应助庆123采纳,获得10
1秒前
妮妮发布了新的文献求助10
1秒前
2秒前
深情安青应助百里酚蓝采纳,获得10
2秒前
3秒前
3秒前
露露发布了新的文献求助10
3秒前
3秒前
小南发布了新的文献求助10
4秒前
x1981发布了新的文献求助30
4秒前
4秒前
小黄发布了新的文献求助10
4秒前
4秒前
baoziya发布了新的文献求助10
5秒前
5秒前
不配.应助芋圆会吃饭采纳,获得70
5秒前
ppboyindream发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
潜心发布了新的文献求助10
6秒前
刘刘刘完成签到 ,获得积分10
6秒前
思源应助夏夏子采纳,获得10
6秒前
7秒前
爆米花应助Binzhiqiang采纳,获得10
7秒前
orixero应助小巧幼蓉采纳,获得10
7秒前
LJ完成签到,获得积分10
7秒前
lizipi完成签到,获得积分10
7秒前
MFiWanting完成签到,获得积分10
7秒前
8秒前
落寞丹萱发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514020
求助须知:如何正确求助?哪些是违规求助? 3096358
关于积分的说明 9231395
捐赠科研通 2791445
什么是DOI,文献DOI怎么找? 1531886
邀请新用户注册赠送积分活动 711660
科研通“疑难数据库(出版商)”最低求助积分说明 706931